Wnt signaling pathway


In cellular biology, the Wnt signaling pathways are a group of signal transduction pathways which begin with proteins that pass signals into a cell through cell surface receptors. The name Wnt, pronounced "wint", is a portmanteau created from the names Wingless and Int-1. Wnt signaling pathways use either nearby cell-cell communication or same-cell communication. They are highly evolutionarily conserved in animals, which means they are similar across animal species from fruit flies to humans.
Three Wnt signaling pathways have been characterized: the canonical Wnt pathway, the noncanonical planar cell polarity pathway, and the noncanonical Wnt/calcium pathway. All three pathways are activated by the binding of a Wnt-protein ligand to a Frizzled family receptor, which passes the biological signal to the Dishevelled protein inside the cell. The canonical Wnt pathway leads to regulation of gene transcription, and is thought to be negatively regulated in part by the SPATS1 gene. The noncanonical planar cell polarity pathway regulates the cytoskeleton that is responsible for the shape of the cell. The noncanonical Wnt/calcium pathway regulates calcium inside the cell.
Wnt signaling was first identified for its role in carcinogenesis, then for its function in embryonic development. The embryonic processes it controls include body axis patterning, cell fate specification, cell proliferation and cell migration. These processes are necessary for proper formation of important tissues including bone, heart and muscle. Its role in embryonic development was discovered when genetic mutations in Wnt pathway proteins produced abnormal fruit fly embryos. Later research found that the genes responsible for these abnormalities also influenced breast cancer development in mice. Wnt signaling also controls tissue regeneration in adult bone marrow, skin and intestine.
This pathway's clinical importance was demonstrated by mutations that lead to various diseases, including breast and prostate cancer, glioblastoma, type II diabetes and others. In recent years, researchers reported first successful use of Wnt pathway inhibitors in mouse models of disease.

History and etymology

The discovery of Wnt signaling was influenced by research on oncogenic retroviruses. In 1982, Roel Nusse and Harold Varmus infected mice with mouse mammary tumor virus in order to mutate mouse genes to see which mutated genes could cause breast tumors. They identified a new mouse proto-oncogene that they named int1.
Int1 is highly conserved across multiple species, including humans and Drosophila. In 1987, researchers discovered that the int1 gene in Drosophila was actually the already known and characterized Drosophila gene known as Wingless. Since previous research by Christiane Nüsslein-Volhard and Eric Wieschaus had already established the function of Wg as a segment polarity gene involved in the formation of the body axis during embryonic development, researchers determined that the mammalian int1 discovered in mice is also involved in embryonic development.
Continued research led to the discovery of further int1-related genes; however, because those genes were not identified in the same manner as int1, the int gene nomenclature was inadequate. Thus, the int/Wingless family became the Wnt family and int1 became Wnt1. The name Wnt is a portmanteau of int and Wg and stands for "Wingless-related integration site".

Proteins

Wnt comprises a diverse family of secreted lipid-modified signaling glycoproteins that are 350–400 amino acids in length. The lipid modification of all Wnts is palmitoleoylation of a single totally conserved cysteine residue. Palmitoleoylation is necessary because it is required for Wnt to bind to its carrier protein Wntless so it can be transported to the plasma membrane for secretion and it allows the Wnt protein to bind its receptor Frizzled Wnt proteins also undergo glycosylation, which attaches a carbohydrate in order to ensure proper secretion. In Wnt signaling, these proteins act as ligands to activate the different Wnt pathways via paracrine and autocrine routes.
These proteins are highly conserved across species. They can be found in mice, humans, Xenopus, zebrafish, Drosophila and many others.
SpeciesWnt proteins
Homo sapiensWNT1, WNT2, WNT2B, WNT3, WNT3A, WNT4, WNT5A, WNT5B, WNT6, WNT7A, WNT7B, WNT8A, WNT8B, WNT9A, WNT9B, WNT10A, WNT10B, WNT11, WNT16
Mus musculus Wnt1, Wnt2, Wnt2B, Wnt3, Wnt3A, Wnt4, Wnt5A, Wnt5B, Wnt6, Wnt7A, Wnt7B, Wnt8A, Wnt8B, Wnt9A, Wnt9B, Wnt10A, Wnt10B, Wnt11, Wnt16
XenopusWnt1, Wnt2, Wnt2B, Wnt3, Wnt3A, Wnt4, Wnt5A, Wnt5B, Wnt7A, Wnt7B, Wnt8A, Wnt8B, Wnt10A, Wnt10B, Wnt11, Wnt11R
Danio rerioWnt1, Wnt2, Wnt2B, Wnt3, Wnt3A, Wnt4, Wnt5A, Wnt5B, Wnt6, Wnt7A, Wnt7B, Wnt8A, Wnt8B, Wnt10A, Wnt10B, Wnt11, Wnt16
DrosophilaWg, DWnt2, DWnt3/5, DWnt 4, DWnt6, WntD/DWnt8, DWnt10
Hydrahywnt1, hywnt5a, hywnt8, hywnt7, hywnt9/10a, hywnt9/10b, hywnt9/10c, hywnt11, hywnt16
C. elegansmom-2, lin-44, egl-20, cwn-1, cwn-2

Mechanism

Foundation

Wnt signaling begins when a Wnt protein binds to the N-terminal extra-cellular cysteine-rich domain of a Frizzled family receptor. These receptors span the plasma membrane seven times and constitute a distinct family of G-protein coupled receptors. However, to facilitate Wnt signaling, co-receptors may be required alongside the interaction between the Wnt protein and Fz receptor. Examples include lipoprotein receptor-related protein -5/6, receptor tyrosine kinase, and ROR2. Upon activation of the receptor, a signal is sent to the phosphoprotein Dishevelled, which is located in the cytoplasm. This signal is transmitted via a direct interaction between Fz and Dsh. Dsh proteins are present in all organisms and they all share the following highly conserved protein domains: an amino-terminal DIX domain, a central PDZ domain, and a carboxy-terminal DEP domain. These different domains are important because after Dsh, the Wnt signal can branch off into multiple pathways and each pathway interacts with a different combination of the three domains.

Canonical and noncanonical pathways

The three best characterized Wnt signaling pathways are the canonical Wnt pathway, the noncanonical planar cell polarity pathway, and the noncanonical Wnt/calcium pathway. As their names suggest, these pathways belong to one of two categories: canonical or noncanonical. The difference between the categories is that a canonical pathway involves the protein beta-catenin while a noncanonical pathway operates independently of it.

Canonical pathway

The canonical Wnt pathway is the Wnt pathway that causes an accumulation of β-catenin in the cytoplasm and its eventual translocation into the nucleus to act as a transcriptional coactivator of transcription factors that belong to the TCF/LEF family. Without Wnt, β-catenin would not accumulate in the cytoplasm since a destruction complex would normally degrade it. This destruction complex includes the following proteins: Axin, adenomatosis polyposis coli, protein phosphatase 2A, glycogen synthase kinase 3 and casein kinase 1α. It degrades β-catenin by targeting it for ubiquitination, which subsequently sends it to the proteasome to be digested. However, as soon as Wnt binds Fz and LRP5/6, the destruction complex function becomes disrupted. This is due to Wnt causing the translocation of the negative Wnt regulator, Axin, and the destruction complex to the plasma membrane. Phosphorylation by other proteins in the destruction complex subsequently binds Axin to the cytoplasmic tail of LRP5/6. Axin becomes de-phosphorylated and its stability and levels decrease. Dsh then becomes activated via phosphorylation and its DIX and PDZ domains inhibit the GSK3 activity of the destruction complex. This allows β-catenin to accumulate and localize to the nucleus and subsequently induce a cellular response via gene transduction alongside the TCF/LEF transcription factors. β-catenin recruits other transcriptional coactivators, such as BCL9, Pygopus and Parafibromin/Hyrax. The complexity of the transcriptional complex assembled by β-catenin is beginning to emerge thanks to new high-throughput proteomics studies. However, a unified theory of how β‐catenin drives target gene expression is still missing, and tissue-specific players might assist β‐catenin to define its target genes. The extensivity of the β-catenin interacting proteins complicates our understanding: β-catenin may be directly phosphorylated at Ser552 by Akt, which causes its disassociation from cell-cell contacts and accumulation in cytosol, thereafter 14-3-3ζ interacts with β-catenin and enhances its nuclear translocation. BCL9 and Pygopus have been reported, in fact, to possess several β-catenin-independent functions.

Noncanonical pathways

The noncanonical planar cell polarity pathway does not involve β-catenin. It does not use LRP-5/6 as its co-receptor and is thought to use NRH1, Ryk, PTK7 or ROR2. The PCP pathway is activated via the binding of Wnt to Fz and its co-receptor. The receptor then recruits Dsh, which uses its PDZ and DIX domains to form a complex with Dishevelled-associated activator of morphogenesis 1. Daam1 then activates the small G-protein Rho through a guanine exchange factor. Rho activates Rho-associated kinase, which is one of the major regulators of the cytoskeleton. Dsh also forms a complex with rac1 and mediates profilin binding to actin. Rac1 activates JNK and can also lead to actin polymerization. Profilin binding to actin can result in restructuring of the cytoskeleton and gastrulation.
The noncanonical Wnt/calcium pathway also does not involve β-catenin. Its role is to help regulate calcium release from the endoplasmic reticulum in order to control intracellular calcium levels. Like other Wnt pathways, upon ligand binding, the activated Fz receptor directly interacts with Dsh and activates specific Dsh-protein domains. The domains involved in Wnt/calcium signaling are the PDZ and DEP domains. However, unlike other Wnt pathways, the Fz receptor directly interfaces with a trimeric G-protein. This co-stimulation of Dsh and the G-protein can lead to the activation of either PLC or cGMP-specific PDE. If PLC is activated, the plasma membrane component PIP2 is cleaved into DAG and IP3. When IP3 binds its receptor on the ER, calcium is released. Increased concentrations of calcium and DAG can activate Cdc42 through PKC. Cdc42 is an important regulator of ventral patterning. Increased calcium also activates calcineurin and CaMKII. Calcineurin induces activation of the transcription factor NFAT, which regulates cell adhesion, migration and tissue separation. CaMKII activates TAK1 and NLK kinase, which can interfere with TCF/β-Catenin signaling in the canonical Wnt pathway. However, if PDE is activated, calcium release from the ER is inhibited. PDE mediates this through the inhibition of PKG, which subsequently causes the inhibition of calcium release.