White phosphorus munition
White phosphorus munitions are weapons that use one of the common allotropes of the chemical element phosphorus. White phosphorus is used in smoke, illumination, and incendiary munitions, and is commonly the burning element of tracer ammunition. Other common names for white phosphorus munitions include WP and the slang terms Willie Pete and Willie Peter, which are derived from William Peter, the World War II phonetic alphabet rendering of the letters WP. White phosphorus is pyrophoric ; burns fiercely; and can ignite cloth, fuel, ammunition, and other combustibles.
White phosphorus is a highly efficient smoke-producing agent, reacting with air to produce an immediate blanket of phosphorus pentoxide vapour. Smoke-producing white phosphorus munitions are very common, particularly as smoke grenades for infantry, loaded in defensive grenade launchers on tanks and other armoured vehicles, and in the ammunition allotment for artillery and mortars. These create smoke screens to mask friendly forces' movement, position, infrared signatures, and shooting positions. They are often called smoke/marker rounds for their use in marking points of interest, such as a light mortar to designate a target for artillery spotters.
History
Early use
White phosphorus was used by Fenian arsonists in the 19th century in a formulation that became known as "Fenian fire". The phosphorus would be in a solution of carbon disulfide; when the carbon disulfide evaporates, the phosphorus bursts into flames. The same formula was also used in arson in Australia.World War I, the inter-war period and World War II
The British Army introduced the first factory-built white phosphorus grenades in late 1916 during the First World War. During the war, white phosphorus mortar bombs, shells, rockets, and grenades were used extensively by American, Commonwealth, and, to a lesser extent, Japanese forces, in both smoke-generating and antipersonnel roles. The Royal Air Force based in Iraq also used white phosphorus bombs in Anbar Province during the Iraqi revolt of 1920.Among the many social groups protesting the war and conscription at the time, at least one, the Industrial Workers of the World in Australia, used Fenian fire.
In the interwar years, the US Army trained using white phosphorus, by artillery shell and air bombardment.
In 1940, when the German invasion of Great Britain seemed imminent, the phosphorus firm of Albright and Wilson suggested that the British government use a material similar to Fenian fire in several expedient incendiary weapons. The only one fielded was the Grenade, No. 76 or Special Incendiary Phosphorus grenade, which consisted of a glass bottle filled with a mixture similar to Fenian fire, plus some latex. It came in two versions, one with a red cap intended to be thrown by hand, and a slightly stronger bottle with a green cap, intended to be launched from the Northover projector, a crude launcher using black powder as a propellant. These were improvised anti-tank weapons, hastily fielded in 1940 when the British were awaiting a potential German invasion after losing the bulk of their modern armaments in the Dunkirk evacuation.
File:Ex-USS Alabama - NH 57483.jpg|thumb|left|Air burst of a white phosphorus bomb over the USS Alabama during a test exercise conducted by Billy Mitchell, September 1921
At the start of the Normandy campaign, 20% of American 81 mm mortar ammunition consisted of M57 point-detonating bursting smoke rounds using WP filler. At least five American Medal of Honor citations mention their recipients using M15 white phosphorus hand grenades to clear enemy positions, and in the 1944 liberation of Cherbourg alone, a single US mortar battalion, the 87th, fired 11,899 white phosphorus rounds into the city. The US Army and Marines used M2 and M328 WP shells in mortars. White phosphorus was widely used by Allied soldiers for breaking up German attacks and creating havoc among enemy troop concentrations during the latter part of the war.
US Sherman tanks carried the M64, a 75mm white phosphorus round intended for screening and artillery spotting, but tank crews found it useful against German tanks such as the Panther that their APC ammunition could not penetrate at long range. Smoke from rounds fired directly at German tanks would be used to blind them, allowing the Shermans to close to a range where their armour-piercing rounds were effective. In addition, due to the turret ventilation systems sucking in fumes, German crews would sometimes be forced to abandon their vehicle: this proved particularly effective against inexperienced crews who, on seeing smoke inside the turret, would assume their tank had caught fire. Smoke was also used for "silhouetting" enemy vehicles, with rounds dropped behind them to produce a better contrast for gunnery.
Later 20th century uses
White phosphorus munitions were used extensively by US forces in Vietnam and by Russian forces in the First Chechen War and Second Chechen War. White phosphorus grenades were used by the US in Vietnam to destroy Viet Cong tunnel complexes as they would burn up all oxygen and suffocate the enemy soldiers sheltering inside. British soldiers also made extensive use of white phosphorus grenades during the Falklands War to clear out Argentine positions as the peaty soil they were constructed on tended to lessen the impact of fragmentation grenades.Use by US forces in Iraq
In November 2004, during the Second Battle of Fallujah, Washington Post reporters embedded with Task Force 2-2, Regimental Combat Team 7 stated that they witnessed artillery guns firing white phosphorus projectiles, which "create a screen of fire that cannot be extinguished with water. Insurgents reported being attacked with a substance that melted their skin, a reaction consistent with white phosphorous burns." The same article also reported, "The corpses of the mujaheddin which we received were burned, and some corpses were melted." The March/April 2005 issue of an official Army publication called Field Artillery Magazine reported that "White phosphorus proved to be an effective and versatile munition and a potent psychological weapon against the insurgents in trench lines and spider holes. ... We fired 'shake and bake' missions at the insurgents using W.P. to flush them out and H.E. to take them out".The documentary Fallujah, The Hidden Massacre, produced by RAI TV and released 8 November 2005, showed video and photos that they claimed to be of Fallujah combatants and also civilians, including women and children, who had died of burns caused by white phosphorus during the Second Battle of Fallujah.
On 15 November 2005, following denials to the press from the US ambassadors in London and Rome, the US Department of Defense confirmed that US forces had used white phosphorus as an incendiary weapon in Fallujah, in order to drive combatants out of dug-in positions. On 22 November 2005, the Iraqi government stated it would investigate the use of white phosphorus in the battle of Fallujah. On 30 November 2005, the BBC quoted US General Peter Pace saying "It is not a chemical weapon. It is an incendiary. And it is well within the law of war to use those weapons as they're being used, for marking and for screening." Professor Paul Rodgers from the University of Bradford department of peace and conflict studies said that white phosphorus would probably fall into the category of chemical weapons if it was used directly against people.
Use by Israeli forces in Lebanon
2006 Lebanon War
During the 2006 Lebanon War, Israel said that it had used phosphorus shells "against military targets in open ground" in Southern Lebanon. Israel said that its use of these munitions was permitted under international conventions.However, President of Lebanon Émile Lahoud said that phosphorus shells were used against civilians. The first Lebanese official complaint about the use of phosphorus came from Information Minister Ghazi Aridi.
2023 Israel–Lebanon border clashes and 2024 invasion
and Human Rights Watch accused Israel of using white phosphorous artillery shells indiscriminately in its attack in Dhayra, Lebanon on October 16, that injured at least nine civilians, and that it was unlawful. Amnesty is investigating this and other potential violations of international humanitarian law by all parties in the region. The claim was confirmed by The Washington Post, which identified two white phosphorus shell casings made in the United States.By 6 March, the National Council for Scientific Research in Lebanon said 117 white phosphorous bombs had been dropped on southern Lebanon. Israel says that they have been using the substance to create a smokescreen on the battlefield; however, it has been alleged that its use was an attempt by Israel to make the land uninhabitable in the future.
According to a confidential report prepared by the government of one of United Nations Interim Force in Lebanon's contributing countries that was reviewed by the Financial Times, on 13 October multiple white phosphorus munitions were fired within 100 metres of a UNIFIL base, injuring 15 peacekeepers, after an incident where Israeli Merkava tanks had broken into the base and stayed for 45 minutes.
Use by Israeli forces in Gaza
In its early statements regarding the Gaza War of 2008–2009, the Israeli military denied using WP entirely, saying "The IDF acts only in accordance with what is permitted by international law and does not use white phosphorus." However, numerous reports from human rights groups during the war indicated that WP shells were being used by Israeli forces in populated areas.On 5 January 2009, The Times of London reported that telltale smoke associated with white phosphorus had been seen in the vicinity of Israeli shelling. On 12 January, it was reported that more than 50 patients in Nasser Hospital were being treated for phosphorus burns.
On 15 January, the headquarters of the United Nations Relief and Works Agency in Gaza City was struck by IDF white phosphorous artillery shells, setting fire to pallets of relief materials and igniting several large fuel storage tanks. Senior Israeli defense officials maintain that the shelling was in response to Israeli military personnel being fired upon by Hamas fighters who were in proximity to the UN headquarters, and was used for smoke. The soldiers who ordered the attack were later reprimanded for violating the IDF rules of engagement. The IDF further investigated improper use of WP in the conflict, particularly in one incident in which 20 WP shells were fired in a built-up area of Beit Lahiya.
After the Israel Defense Forces had officially denied for months having used white phosphorus during the war, the Israeli government released a report in July 2009 that confirmed that the IDF had used white phosphorus in both exploding munitions and smoke projectiles. The report argues that the use of these munitions was limited to unpopulated areas for marking and signaling and not as an anti-personnel weapon. The Israeli government report further stated that smoke screening projectiles were the majority of the munitions containing white phosphorus employed by the IDF and that these were very effective in that role. The report states that at no time did IDF forces have the objective of inflicting any harm on the civilian population.
Head of the UN Fact Finding Mission Justice Richard Goldstone presented the report of the Mission to the Human Rights Council in Geneva on 29 September 2009. The Goldstone report accepted that white phosphorus is not illegal under international law but did find that the Israelis were "systematically reckless in determining its use in built-up areas". It also called for serious consideration to be given to the banning of its use in built-up areas.
The 155mm WP artillery shells used by Israel are typically the American M825A1, a base-ejection shell which deploys an airbursting submunition canister. On detonation of the bursting charge, the canister deploys 116 units, quarter-circle wedges of felt impregnated with of WP, producing a smokescreen lasting 5–10 minutes depending on weather conditions. These submunitions typically land in an elliptical pattern 125–250 meters in diameter, with the size of the effect area depending on the burst height, and produce a smokescreen 10 metres in height.