Wheel theory
A wheel is a type of algebra where division is always defined. In particular, division by zero is meaningful. The real numbers can be extended to a wheel, as can any commutative ring.
The term wheel is inspired by the topological picture of the real projective line together with an extra point ⊥ such that.
A wheel can be regarded as the equivalent of a commutative ring where addition and multiplication are not a group but respectively a commutative monoid and a commutative monoid with involution.
Definition
A wheel is an algebraic structure, in which- is a set,
- and are elements of that set,
- and are binary operations,
- is a unary operation,
- and are each commutative and associative, and have and as their respective identities.
- is an involution, for example
- is multiplicative, for example
Algebra of wheels
- in the general case
- in the general case, as is not the same as the multiplicative inverse of.
However, for values of satisfying and, we get the usual
Examples
Wheel of fractions
Let be a commutative ring, and let be a multiplicative submonoid of. Define the congruence relation on viaDefine the wheel of fractions of with respect to as the quotient with the operations
In general, this structure is not a ring unless it is trivial, as in the usual sense – here with we get, although that implies that is an improper relation on our wheel.
This follows from the fact that, which is also not true in general.
Projective line and Riemann sphere
The special case of the above starting with a field produces a projective line extended to a wheel by adjoining a bottom element noted ⊥, where. The projective line is itself an extension of the original field by an element, where for any element in the field. However, is still undefined on the projective line, but is defined in its extension to a wheel.Starting with the real numbers, the corresponding projective "line" is geometrically a circle, and then the extra point gives the shape that is the source of the term "wheel". Or starting with the complex numbers instead, the corresponding projective "line" is a sphere, and then the extra point gives a 3-dimensional version of a wheel.