Messier 87


Messier 87 is a supergiant elliptical galaxy in the constellation Virgo that contains several trillion stars. One of the largest and most massive galaxies in the local universe, it has a large population of globular clusters—about 15,000 compared with the 150–200 orbiting the Milky Way—and a jet of energetic plasma that originates at the core and extends at least, traveling at a relativistic speed. It is one of the brightest radio sources in the sky and a popular target for both amateur and professional astronomers.
The French astronomer Charles Messier discovered M87 in 1781, and cataloged it as a nebula. M87 is about from Earth and is the second-brightest galaxy within the northern Virgo Cluster, having many satellite galaxies. Unlike a disk-shaped spiral galaxy, M87 has no distinctive dust lanes. Instead, it has an almost featureless, ellipsoidal shape typical of most giant elliptical galaxies, diminishing in luminosity with distance from the center. Forming around one-sixth of its mass, M87's stars have a nearly spherically symmetric distribution. Their population density decreases with increasing distance from the core. It has an active supermassive black hole at its core, which forms the primary component of an active galactic nucleus. The black hole was imaged using data collected in 2017 by the Event Horizon Telescope, with a final, processed image released on 10 April 2019. In March 2021, the EHT Collaboration presented, for the first time, a polarized-based image of the black hole which may help better reveal the forces giving rise to quasars.
The galaxy is a strong source of multi-wavelength radiation, particularly radio waves. It has an isophotal diameter of, with a diffuse galactic envelope that extends to a radius of about, where it is truncated—possibly by an encounter with another galaxy. Its interstellar medium consists of diffuse gas enriched by elements emitted from evolved stars.

Observation history

In 1781, the French astronomer Charles Messier published a catalogue of 103 objects that had a nebulous appearance as part of a list intended to identify objects that might otherwise be confused with comets. In subsequent use, each catalogue entry was prefixed with an "M". Thus, M87 was the eighty-seventh object listed in Messier's catalogue. During the 1880s, the object was included as NGC 4486 in the New General Catalogue of nebulae and star clusters assembled by the Danish-Irish astronomer John Dreyer, which he based primarily on the observations of the English astronomer John Herschel.
In 1918, the American astronomer Heber Curtis of Lick Observatory noted M87's lack of a spiral structure and observed a "curious straight ray... apparently connected with the nucleus by a thin line of matter." The ray appeared brightest near the galactic center. In January 1922, Russian astronomer Innokentii A. Balanowski discovered supernova SN 1919A on a photographic plate of M87 that had been taken on 22 February 1919.

Identification as a galaxy

In 1922, the American astronomer Edwin Hubble categorized M87 as one of the brighter globular nebulae, as it lacked any spiral structure, but like spiral nebulae, appeared to belong to the family of non-galactic nebulae. In 1926, he produced a new categorization, distinguishing extragalactic from galactic nebulae, the former being independent star systems. M87 was classified as a type of elliptical extragalactic nebula with no apparent elongation.
In 1931, Hubble described M87 as a member of the Virgo Cluster, and gave a provisional estimate of from Earth. It was then the only known elliptical nebula for which individual stars could be resolved, although it was pointed out that globular clusters would be indistinguishable from individual stars at such distances. In his 1936 The Realm of the Nebulae, Hubble examines the terminology of the day; some astronomers labeled extragalactic nebulae as external galaxies on the basis that they were stellar systems at far distances from our own galaxy, while others preferred the conventional term extragalactic nebulae, as galaxy was at that time a synonym for the Milky Way. M87 continued to be labelled as an extragalactic nebula at least until 1954.

Modern research

In 1947, a prominent radio source, Virgo A, was identified with errors in its measured position that overlapped the location of M87. The source was confirmed to be M87 by 1953, and the linear relativistic jet emerging from the core of the galaxy was suggested as the cause. This jet extended from the core at a position angle of 260° to an angular distance of 20″ with an angular width of 2″. In 1969–1970, a strong component of the radio emission was found to closely align with the optical source of the jet.
In 1966, the United States Naval Research Laboratory's Aerobee 150 rocket identified Virgo X-1, the first X-ray source in Virgo. The Aerobee rocket launched from White Sands Missile Range on 7 July 1967 yielded further evidence that the source of Virgo X-1 was the radio galaxy M87. Subsequent X-ray observations by the HEAO 1 and Einstein Observatory showed a complex source that included the active galactic nucleus of M87. However, there is little central concentration of the X-ray emission.
M87 has been an important testing ground for techniques that measure the masses of central supermassive black holes in galaxies. In 1978, stellar-dynamical modeling of the mass distribution in M87 gave evidence for a central mass of five billion solar masses. After the installation of the COSTAR corrective-optics module in the Hubble Space Telescope in 1993, the Hubble Faint Object Spectrograph was used to measure the rotation velocity of the ionized gas disk at the center of M87, as an "early release observation" designed to test the scientific performance of the post-repair Hubble instruments. The FOS data indicated a central black hole mass of 2.4 billion, with 30% uncertainty. Globular clusters within M87 have been used to calibrate metallicity relations as well.
M87 was observed by the Event Horizon Telescope during much of 2017. The event horizon of the black hole at the center was directly imaged by the EHT, then revealed in a press conference on the issue date stated, filtering out from this the first image of a black hole's shadow.

Visibility

M87 is near a high declination limit of the Virgo constellation, abutting Coma Berenices. It lies along the line between the stars Epsilon Virginis and Denebola. The galaxy can be observed using a small telescope with a aperture, extending across an angular area of at a surface brightness of 12.9, with a very bright, 45 arcsecond core. Viewing the jet is a challenge without the aid of photography. Before 1991, the Ukrainian-American astronomer Otto Struve was the only person known to have seen the jet visually, using the Hooker telescope. In more recent years it has been observed in larger amateur telescopes under excellent conditions.

Properties

In the modified Hubble sequence galaxy morphological classification scheme of the French astronomer Gérard de Vaucouleurs, M87 is categorized as an E0p galaxy. "E0" designates an elliptical galaxy that displays no flattening—that is, it appears spherical. A "p" suffix indicates a peculiar galaxy that does not fit cleanly into the classification scheme; in this case, the peculiarity is the presence of the jet emerging from the core. In the Yerkes scheme, M87 is classified as a type-cD galaxy. A D galaxy has an elliptical-like nucleus surrounded by an extensive, dustless, diffuse envelope. A D type supergiant is called a cD galaxy.
The distance to M87 has been estimated using several independent techniques. These include measurement of the luminosity of planetary nebulae, comparison with nearby galaxies whose distance is estimated using standard candles such as cepheid variables, the linear size distribution of globular clusters, and the tip of the red-giant branch method using individually resolved red giant stars. These measurements are consistent with each other, and their weighted average yields a distance estimate of.
Radius
kpc
Mass
×
322.4
443.0
475.7
506.0

M87 is one of the most massive galaxies in the local Universe. Its diameter is estimated at 132,000 light-years, which is approximately 51% larger than that of the Milky Way. As an elliptical galaxy, the galaxy is a spheroid rather than a flattened disc, accounting for the substantially larger mass of M87. Within a radius of, the mass is times the mass of the Sun, which is double the mass of the Milky Way galaxy. As with other galaxies, only a fraction of this mass is in the form of stars: M87 has an estimated mass to luminosity ratio of ; that is, only about one part in six of the galaxy's mass is in the form of stars that radiate energy. This ratio varies from 5 to 30, approximately in proportion to in the region of from the core. The total mass of M87 may be 200 times that of the Milky Way.
The galaxy experiences an infall of gas at the rate of two to three solar masses per year, most of which may be accreted onto the core region. The extended stellar envelope of this galaxy reaches a radius of about, compared with about for the Milky Way. Beyond that distance the outer edge of the galaxy has been truncated by some means; possibly by an earlier encounter with another galaxy. There is evidence of linear streams of stars to the northwest of the galaxy, which may have been created by tidal stripping of orbiting galaxies or by small satellite galaxies falling in toward M87. Moreover, a filament of hot, ionized gas in the northeastern outer part of the galaxy may be the remnant of a small, gas-rich galaxy that was disrupted by M87 and could be feeding its active nucleus. M87 is estimated to have at least 50 satellite galaxies, including NGC 4486B and NGC 4478.
The spectrum of the nuclear region of M87 shows the emission lines of various ions, including hydrogen, helium, oxygen, nitrogen, magnesium, and sulfur. The line intensities for weakly ionized atoms are stronger than those of strongly ionized atoms. A galactic nucleus with such spectral properties is termed a LINER, for "low-ionization nuclear emission-line region". The mechanism and source of weak-line-dominated ionization in LINERs and M87 are under debate. Possible causes include shock-induced excitation in the outer parts of the disk or photoionization in the inner region powered by the jet.
Elliptical galaxies such as M87 are believed to form as the result of one or more mergers of smaller galaxies. They generally contain relatively little cold interstellar gas and they are populated mostly by old stars, with little or no ongoing star formation. M87's elliptical shape is maintained by the random orbital motions of its constituent stars, in contrast to the more orderly rotational motions found in a spiral galaxy such as the Milky Way. Using the Very Large Telescope to study the motions of about 300 planetary nebulae, astronomers have determined that M87 absorbed a medium-sized star-forming spiral galaxy over the last billion years. This has resulted in the addition of some younger, bluer stars to M87. The distinctive spectral properties of the planetary nebulae allowed astronomers to discover a chevron-like structure in M87's halo which was produced by the incomplete phase-space mixing of a disrupted galaxy.