

A277056


Least k such that any sufficiently long repunit multiplied by k is a pandigital number in numerical base n.


3



2, 5, 7, 34, 195, 727, 3724, 9124, 92115, 338161, 2780514, 6871290, 99000993
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


COMMENTS

Trailing terms of rows of A277055.
Written in base n, the terms read: 10, 12, 13, 114, 523, 2056, 7214, 13457, 92115, 21107A, B21116, 156776A, D211117, ...


LINKS

Table of n, a(n) for n=2..14.


FORMULA

Conjecture: for even n>4, a(n) = (n2)*n^(n/21) + n^(n/22) + (n^(n/2)1)/(n1) + n/2  1.


EXAMPLE

Any binary repunit multiplied by 2 is a binary pandigital, so a(2)=2 (10 in binary).
kth decimal repunit for k>4 multiplied by 92115 gives a decimal pandigital number (see A277054) with no number less than 92115 having the same property, so a(10)=92115.


CROSSREFS

Cf. A002275, A171102, A277054, A277055, A277059.
Sequence in context: A085394 A041875 A072188 * A160621 A028432 A019409
Adjacent sequences: A277053 A277054 A277055 * A277057 A277058 A277059


KEYWORD

nonn,base,more


AUTHOR

Andrey Zabolotskiy and Altug Alkan, Sep 26 2016


STATUS

approved



