Varnish
Varnish is a clear transparent hard protective coating or film. It is not to be confused with wood stain. It usually has a yellowish shade due to the manufacturing process and materials used, but it may also be pigmented as desired. It is sold commercially in various shades.
Varnish is primarily used as a wood finish where, stained or not, the distinctive tones and grains in the wood are intended to be visible. Varnish finishes are naturally glossy, but satin/semi-gloss and flat sheens are available.
History
The word "varnish" comes from Mediaeval Latin vernix, meaning odorous resin, perhaps derived from Middle Greek berōnikón or beroníkē, meaning amber or amber-colored glass. A false etymology traces the word to the Greek Berenice, the ancient name of modern Benghazi in Libya, where the first varnishes in the Mediterranean area were supposedly used and where resins from the trees of now-vanished forests were sold.Early varnishes were developed by mixing resin—pine pitch, for example—with a solvent and applying them with a brush to get the golden and hardened effect one sees in today's varnishes. Varnishing was a technique well known in ancient Egypt.
Varnishing is also recorded in the history of East and South Asia; in India, China and Japan, where the practice of lacquer work, a species of varnish application, was known at a very early date. The Tang Chinese used medieval chemistry experiments to produce a varnish for clothes and weapons, employing complex chemical formulas applied to silk clothes of underwater divers, a cream designated for polishing bronze mirrors, and other formulas.
Safety
Because of flammability concerns, many product containers list safety precautions for storage and disposal for varnishes and drying oils as they are flammable, and materials used to apply the varnishes may spontaneously combust. Many varnishes contain plant-derived oils, synthetic oils or resins as their binder in combination with organic solvents. These are flammable in their liquid state. All drying oils, certain alkyds, and many polyurethanes produce heat during the curing process. Thus, oil-soaked rags and paper can smolder and ignite into flames, even several hours after use if proper precautions are not taken. Therefore, many manufacturers list proper disposal practices for rags and other items used to apply the finish, such as disposal in a water filled container.Components of varnish
Varnish is traditionally a combination of a drying oil, a resin, and a thinner or solvent plus a metal drier to accelerate the drying. However, different types of varnish have different components. After being applied, the film-forming substances in varnishes either harden directly, as soon as the solvent has fully evaporated, or harden after evaporation of the solvent through curing processes, primarily chemical reaction between oils and oxygen from the air and chemical reactions between components of the varnish.Resin varnishes dry by evaporation of the solvent and harden quickly on drying. Acrylic and waterborne varnishes dry by evaporation of the water but will experience an extended curing period for evaporation of organic solvents absorbed on the latex particles, and possibly chemical curing of the particles. Oil, polyurethane, and epoxy varnishes remain liquid even after evaporation of the solvent but quickly begin to cure, undergoing successive stages from liquid or syrupy, to tacky or sticky, to dry gummy, to dry to the touch, to hard.
Environmental factors such as heat and humidity play a large role in the drying and curing times of varnishes. In classic varnish the cure rate depends on the type of oil used and, to some extent, on the ratio of oil to resin. The drying and curing time of all varnishes may be sped up by exposure to an energy source such as sunlight, ultraviolet light, or heat.
Drying oil
There are many different types of drying oils, including linseed oil, tung oil, and walnut oil. These contain high levels of polyunsaturated fatty acids. Drying oils cure through an exothermic reaction between the polyunsaturated portion of the oil and oxygen from the air. Originally, the term "varnish" referred to finishes that were made entirely of resin dissolved in suitable solvents, either ethanol or turpentine. The advantage to finishes in previous centuries was that resin varnishes had a very rapid cure rate compared to oils; in most cases they are cured practically as soon as the solvent has fully evaporated. By contrast, untreated or "raw" oils may take weeks or months to cure, depending on ambient temperature and other environmental factors. In modern terms, boiled or partially polymerized drying oils with added siccatives or dryers have cure times of less than 24 hours. However, certain non-toxic by-products of the curing process are emitted from the oil film even after it is dry to the touch and over a considerable period of time. It has long been a tradition to combine drying oils with resins to obtain favourable features of both substances.Resin
Many different kinds of resins may be used to create a varnish. Natural resins used for varnish include amber, kauri gum, dammar, copal, rosin, sandarac, balsam, elemi, mastic, and shellac. Varnish may also be created from synthetic resins such as acrylic, alkyd, or polyurethane. A varnish formula might not contain any added resins at all since drying oils can produce a varnish effect by themselves.Solvent
Originally, turpentine or alcohol was used to dissolve the resin and thin the drying oils. The invention of petroleum distillates has led to turpentine substitutes such as white spirit, paint thinner, and mineral spirit. Modern synthetic varnishes may be formulated with water instead of hydrocarbon solvents.Types
Violin
varnishing is a multi-step process involving some or all of the following: primer, sealer, ground, color coats, and clear topcoat. Some systems use a drying oil varnish as described below, while others use spirit varnish made of resin dissolved in alcohol. Touchup in repair or restoration is only done with solvent based varnish.Drying oil such as walnut oil or linseed oil may be used in combination with amber, copal, rosin or other resins. Traditionally the oil is prepared by cooking or exposure to air and sunlight, but modern stand oil is prepared by heating oil at high temperature without oxygen. The refined resin is sometimes available as a translucent solid and is then "run" by cooking or melting it in a pot over heat without solvents. The thickened oil and prepared resin are then cooked together and thinned with turpentine into a brushable solution. The ingredients and processes of violin varnish are very diverse, with some highly regarded old examples showing defects associated with incompatible varnish components.
Some violin finishing systems use vernice bianca as a sealer or ground. There is also evidence that finely powdered minerals, possibly volcanic ash, were used in some grounds. Some violins made in the late 18th century used ox blood to create a very deep-red coloration. Today this varnish would have faded and currently be a very warm, dark orange.
Resin
Most resin or gum varnishes consist of a natural, plant- or insect-derived substance dissolved in a solvent, called spirit varnish or solvent varnish. The solvent may be alcohol, turpentine, or petroleum-based. Some resins are soluble in both alcohol and turpentine. Generally, petroleum solvents, i.e. mineral spirits or paint thinner, can substitute for turpentine. The resins include amber, dammar, copal, rosin, sandarac, elemi, benzoin, mastic, balsam, shellac, and a multitude of lacquers.Synthetic resins such as phenolic resin may be employed as a secondary component in certain varnishes and paints.
Over centuries, many recipes were developed which involved the combination of resins, oils, and other ingredients such as certain waxes. These were believed to impart special tonal qualities to musical instruments and thus were sometimes carefully guarded secrets. The interaction of different ingredients is difficult to predict or reproduce, so expert finishers were often prized professionals.
Shellac
Shellac is a very widely used single-component resin varnish that is alcohol-soluble. It is not used for outdoor surfaces or where it will come into repeated contact with water, such as around a sink or bathtub. The source of shellac resin is a brittle or flaky secretion of the female lac insect, Kerria lacca, found in the forests of Assam and Thailand and harvested from the bark of the trees where she deposits it to provide a sticky hold on the trunk. Shellac is the basis of French polish, which for centuries has been the preferred finish for fine furniture. Specified "dewaxed" shellac has been processed to remove the waxy substances from original shellac and can be used as a primer and sanding-sealer substrate for other finishes such as polyurethanes, alkyds, oils, and acrylics.Prepared shellac is typically available in "clear" and "amber" varieties, generally as "three-pound cut" or three pounds dry shellac to one US gallon of alcohol. Other natural color shades such as ruby and yellow are available from specialty pigment or woodworker's supply outlets. Dry shellac is available as refined flakes, "sticklac," "button lac," or "seedlac." "White pigmented" shellac primer paint is widely available in retail outlets, billed as a fast-drying interior primer "problem solver", in that it adheres to a variety of surfaces and seals off odors and smoke stains. Shellac clean-up may be done either with pure alcohol or with ammonia cleansers.