Sewage treatment




Sewage treatment is a type of wastewater treatment which aims to remove contaminants from sewage to produce an effluent that is suitable for discharge to the surrounding environment or an intended reuse application, thereby preventing water pollution from raw sewage discharges. Sewage contains wastewater from households and businesses and possibly pre-treated industrial wastewater. There are a large number of sewage treatment processes to choose from. These can range from decentralized systems to large centralized systems involving a network of pipes and pump stations which convey the sewage to a treatment plant. For cities that have a combined sewer, the sewers will also carry urban runoff to the sewage treatment plant. Sewage treatment often involves two main stages, called primary and secondary treatment, while advanced treatment also incorporates a tertiary treatment stage with polishing processes and nutrient removal. Secondary treatment can reduce organic matter from sewage,  using aerobic or anaerobic biological processes. A quaternary treatment step can also be added for the removal of organic micropollutants, such as pharmaceuticals. This has been implemented in full-scale in Sweden.
A large number of sewage treatment technologies have been developed, mostly using biological treatment processes. Design engineers and decision makers need to take into account technical and economical criteria of each alternative when choosing a suitable technology. Often, the main criteria for selection are desired effluent quality, expected construction and operating costs, availability of land, energy requirements and sustainability aspects. In developing countries and in rural areas with low population densities, sewage is often treated by various on-site sanitation systems and not conveyed in sewers. These systems include septic tanks connected to drain fields, on-site sewage systems, and vermifilter systems. On the other hand, advanced and relatively expensive sewage treatment plants may include tertiary treatment with disinfection and possibly even a fourth treatment stage to remove micropollutants.
At the global level, an estimated 52% of sewage is treated. However, sewage treatment rates are highly unequal for different countries around the world. For example, while high-income countries treat approximately 74% of their sewage, developing countries treat an average of just 4.2%.
The treatment of sewage is part of the field of sanitation. Sanitation also includes the management of human waste and solid waste as well as stormwater management. The term sewage treatment plant is often used interchangeably with the term wastewater treatment plant.

Terminology

The term sewage treatment plant is nowadays often replaced with the term wastewater treatment plant. Strictly speaking, the latter is a broader term that can also refer to industrial wastewater treatment.
The terms water recycling center or water reclamation plants are also in use as synonyms.

Purposes and overview

The overall aim of treating sewage is to produce an effluent that can be discharged to the environment while causing as little water pollution as possible, or to produce an effluent that can be reused in a useful manner. This is achieved by removing contaminants from the sewage. It is a form of waste management.
With regards to biological treatment of sewage, the treatment objectives can include various degrees of the following: to transform or remove organic matter, nutrients, pathogenic organisms, and specific trace organic constituents.
Some types of sewage treatment produce sewage sludge which can be treated before safe disposal or reuse. Under certain circumstances, the treated sewage sludge might be termed biosolids and can be used as a fertilizer.

Sewage characteristics

Collection

Types of treatment processes

Sewage can be treated close to where the sewage is created, which may be called a decentralized system or even an on-site system. Alternatively, sewage can be collected and transported by a network of pipes and pump stations to a municipal treatment plant. This is called a centralized system.
A large number of sewage treatment technologies have been developed, mostly using biological treatment processes. Very broadly, they can be grouped into high tech versus low tech options, although some technologies might fall into either category. Other grouping classifications are intensive or mechanized systems versus extensive or natural or nature-based systems systems. This classification may be sometimes oversimplified, because a treatment plant may involve a combination of processes, and the interpretation of the concepts of high tech and low tech, intensive and extensive, mechanized and natural processes may vary from place to place.

Low tech, extensive or nature-based processes

Examples for more low-tech, often less expensive sewage treatment systems are shown below. They often use little or no energy. Some of these systems do not provide a high level of treatment, or only treat part of the sewage, or they only provide pre-treatment, like septic tanks. On the other hand, some systems are capable of providing a good performance, satisfactory for several applications. Many of these systems are based on natural treatment processes, requiring large areas, while others are more compact. In most cases, they are used in rural areas or in small to medium-sized communities.
For example, waste stabilization ponds are a low cost treatment option with practically no energy requirements but they require a lot of land. Due to their technical simplicity, most of the savings are in terms of operation and maintenance costs.
Examples for systems that can provide full or partial treatment for toilet wastewater only:
Examples for more high-tech, intensive or mechanized, often relatively expensive sewage treatment systems are listed below. Some of them are energy intensive as well. Many of them provide a very high level of treatment. For example, broadly speaking, the activated sludge process achieves a high effluent quality but is relatively expensive and energy intensive.
There are other process options which may be classified as disposal options, although they can also be understood as basic treatment options. These include: Application of sludge, irrigation, soak pit, leach field, fish pond, floating plant pond, water disposal/groundwater recharge, surface disposal and storage.
The application of sewage to land is both: a type of treatment and a type of final disposal. It leads to groundwater recharge and/or to evapotranspiration. Land application include slow-rate systems, rapid infiltration, subsurface infiltration, overland flow. It is done by flooding, furrows, sprinkler and dripping. It is a treatment/disposal system that requires a large amount of land per person.

Design aspects

Population equivalent

The per person organic matter load is a parameter used in the design of sewage treatment plants. This concept is known as population equivalent. The base value used for PE can vary from one country to another. Commonly used definitions used worldwide are: 1 PE equates to 60 gram of BOD per person per day, and it also equals 200 liters of sewage per day. This concept is also used as a comparison parameter to express the strength of industrial wastewater compared to sewage.

Process selection

When choosing a suitable sewage treatment process, decision makers need to take into account technical and economical criteria. Therefore, each analysis is site-specific. A life cycle assessment can be used, and criteria or weightings are attributed to the various aspects. This makes the final decision subjective to some extent. A range of publications exist to help with technology selection.
In industrialized countries, the most important parameters in process selection are typically efficiency, reliability, and space requirements. In developing countries, they might be different and the focus might be more on construction and operating costs as well as process simplicity.
Choosing the most suitable treatment process is complicated and requires expert inputs, often in the form of feasibility studies. This is because the main important factors to be considered when evaluating and selecting sewage treatment processes are numerous. They include: process applicability, applicable flow, acceptable flow variation, influent characteristics, inhibiting or refractory compounds, climatic aspects, process kinetics and reactor hydraulics, performance, treatment residuals, sludge processing, environmental constraints, requirements for chemical products, energy and other resources; requirements for personnel, operating and maintenance; ancillary processes, reliability, complexity, compatibility, area availability.
With regards to environmental impacts of sewage treatment plants the following aspects are included in the selection process: Odors, vector attraction, sludge transportation, sanitary risks, air contamination, soil and subsoil contamination, surface water pollution or groundwater contamination, devaluation of nearby areas, inconvenience to the nearby population.