Ultraviolet
Ultraviolet radiation or UV is electromagnetic radiation of wavelengths of 100–400 nanometers, shorter than that of visible light, but longer than X-rays. Wavelengths between 10 and 100 nanometers are called extreme ultraviolet and share some properties with soft X-rays. UV radiation is present in sunlight and constitutes about 10% of the total electromagnetic radiation output from the Sun. It is also produced by electric arcs, Cherenkov radiation, and specialized lights, such as mercury-vapor lamps, tanning lamps, and black lights.
The photons of ultraviolet have greater energy than those of visible light, from about 3.1 to 12 electron volts, around the minimum energy required to ionize atoms. Although long-wavelength ultraviolet is not considered an ionizing radiation because its photons lack sufficient energy, it can induce chemical reactions and cause many substances to glow or fluoresce. Many practical applications, including chemical and biological effects, are derived from the way that UV radiation can interact with organic molecules. These interactions can involve exciting orbital electrons to higher energy states in molecules potentially breaking chemical bonds. In contrast, the main effect of longer wavelength radiation is to excite vibrational or rotational states of these molecules, increasing their temperature. Short-wave ultraviolet light is ionizing radiation. Consequently, short-wave UV damages DNA and sterilizes surfaces with which it comes into contact.
For humans, suntan and sunburn are familiar effects of exposure of the skin to UV, along with an increased risk of skin cancer. The amount of UV radiation produced by the Sun means that the Earth would not be able to sustain life on dry land if most of that light were not filtered out by the atmosphere. More energetic, shorter-wavelength "extreme" UV below 121 nm ionizes air so strongly that it is absorbed before it reaches the ground. However, UV is also responsible for the formation of vitamin D in most land vertebrates, including humans. The UV spectrum, thus, has effects both beneficial and detrimental to life.
The lower wavelength limit of the visible spectrum is conventionally taken as 400 nm. Although ultraviolet rays are not generally visible to humans, 400 nm is not a sharp cutoff, with shorter and shorter wavelengths becoming less and less visible in this range. Insects, birds, and some mammals can see near-UV, i.e., somewhat shorter wavelengths than what humans can see.
Visibility
Humans generally cannot use ultraviolet rays for vision.The lens of the human eye and surgically implanted lenses produced since 1986 block most radiation in the near UV wavelength range of 300–400 nm; shorter wavelengths are blocked by the cornea. Humans also lack color receptor adaptations for ultraviolet rays. The photoreceptors of the retina are sensitive to near-UV but the lens does not focus this light properly, causing UV light bulbs to look fuzzy.
People lacking a lens perceive near-UV as whitish-blue or whitish-violet. Near-UV radiation is visible to insects, some mammals, and some birds. Birds have a fourth color receptor for ultraviolet rays; this, coupled with eye structures that transmit more UV gives smaller birds "true" UV vision.
History and discovery
"Ultraviolet" means "beyond violet", violet being the color of the highest frequencies of visible light. Ultraviolet has a higher frequency than violet light.UV radiation was discovered in February 1801 when the German physicist Johann Wilhelm Ritter observed that invisible rays just beyond the violet end of the visible spectrum darkened silver chloride-soaked paper more quickly than violet light itself. He announced the discovery in a very brief letter to the Annalen der Physik and later called them "oxidizing rays" to emphasize chemical reactivity and to distinguish them from "heat rays", discovered the previous year at the other end of the visible spectrum. The simpler term "chemical rays" was adopted soon afterwards, and remained popular throughout the 19th century, although some said that this radiation was entirely different from light. The terms "chemical rays" and "heat rays" were eventually dropped in favor of ultraviolet and infrared radiation, respectively. In 1878, the sterilizing effect of short-wavelength light by killing bacteria was discovered. By 1903, the most effective wavelengths were known to be around 250 nm. In 1960, the effect of ultraviolet radiation on DNA was established.
The discovery of the ultraviolet radiation with wavelengths below 200 nm, named "vacuum ultraviolet" because it is strongly absorbed by the oxygen in air, was made in 1893 by German physicist Victor Schumann. The division of UV into UVA, UVB, and UVC was decided "unanimously" by a committee of the Second International Congress on Light on August 17th, 1932, at the Castle of Christiansborg in Copenhagen.
Subtypes
The electromagnetic spectrum of ultraviolet radiation, defined most broadly as 10–400 nanometers, can be subdivided into a number of ranges recommended by the ISO standard ISO 21348:Several solid-state and vacuum devices have been explored for use in different parts of the UV spectrum. Many approaches seek to adapt visible light-sensing devices, but these can suffer from unwanted response to visible light and various instabilities. Ultraviolet can be detected by suitable photodiodes and photocathodes, which can be tailored to be sensitive to different parts of the UV spectrum. Sensitive UV photomultipliers are available. Spectrometers and radiometers are made for measurement of UV radiation. Silicon detectors are used across the spectrum.
Vacuum ultraviolet
Vacuum UV, or VUV, wavelengths are strongly absorbed by molecular oxygen in the air, though the longer wavelengths around 150–200 nm can propagate through nitrogen. Scientific instruments can, therefore, use this spectral range by operating in an oxygen-free atmosphere, without the need for costly vacuum chambers. Significant examples include 193-nm photolithography equipment and circular dichroism spectrometers.Technology for VUV instrumentation was largely driven by solar astronomy for many decades. While optics can be used to remove unwanted visible light that contaminates the VUV, in general, detectors can be limited by their response to non-VUV radiation, and the development of solar-blind devices has been an important area of research. Wide-gap solid-state devices or vacuum devices with high-cutoff photocathodes can be attractive compared to silicon diodes.
Extreme ultraviolet
Extreme UV is characterized by a transition in the physics of interaction with matter. Wavelengths longer than about 30 nm interact mainly with the outer valence electrons of atoms, while wavelengths shorter than that interact mainly with inner-shell electrons and nuclei. The long end of the EUV spectrum is set by a prominent He+ spectral line at 30.4 nm. EUV is strongly absorbed by most known materials, but synthesizing multilayer optics that reflect up to about 50% of EUV radiation at normal incidence is possible. This technology was pioneered by the NIXT and MSSTA sounding rockets in the 1990s, and it has been used to make telescopes for solar imaging. See also the Extreme Ultraviolet Explorer satellite.Hard and soft ultraviolet
Some sources use the distinction of "hard UV" and "soft UV". For instance, in the case of astrophysics, the boundary may be at the Lyman limit, with "hard UV" being more energetic; the same terms may also be used in other fields, such as cosmetology, optoelectronic, etc. The numerical values of the boundary between hard/soft, even within similar scientific fields, do not necessarily coincide; for example, one applied-physics publication used a boundary of 190 nm between hard and soft UV regions.Solar ultraviolet
Very hot objects emit UV radiation. The Sun emits ultraviolet radiation at all wavelengths, including the extreme ultraviolet where it crosses into X-rays at 10 nm. Extremely hot stars emit proportionally more UV radiation than the Sun. Sunlight in space at the top of Earth's atmosphere is composed of about 50% infrared light, 40% visible light, and 10% ultraviolet light, for a total intensity of about 1400 W/m2 in vacuum.The atmosphere blocks about 77% of the Sun's UV, when the Sun is highest in the sky, with absorption increasing at shorter UV wavelengths. At ground level with the sun at zenith, sunlight is 44% visible light, 3% ultraviolet, and the remainder infrared. Of the ultraviolet radiation that reaches the Earth's surface, more than 95% is the longer wavelengths of UVA, with the small remainder UVB. Almost no UVC reaches the Earth's surface. The fraction of UVA and UVB which remains in UV radiation after passing through the atmosphere is heavily dependent on cloud cover and atmospheric conditions. On "partly cloudy" days, patches of blue sky showing between clouds are also sources of UVA and UVB, which are produced by Rayleigh scattering in the same way as the visible blue light from those parts of the sky. UVB also plays a major role in plant development, as it affects most of the plant hormones. During total overcast, the amount of absorption due to clouds is heavily dependent on the thickness of the clouds and latitude, with no clear measurements correlating specific thickness and absorption of UVA and UVB.
The shorter bands of UVC, as well as even more-energetic UV radiation produced by the Sun, are absorbed by oxygen and generate the ozone in the ozone layer when single oxygen atoms produced by UV photolysis of dioxygen react with more dioxygen. The ozone layer is especially important in blocking most UVB and the remaining part of UVC not already blocked by ordinary oxygen in air.
Blockers, absorbers, and windows
Ultraviolet absorbers are molecules used in organic materials to absorb UV radiation to reduce the UV degradation of a material. The absorbers can themselves degrade over time, so monitoring of absorber levels in weathered materials is necessary.In sunscreen, ingredients that absorb UVA/UVB rays, such as avobenzone, oxybenzone and octyl methoxycinnamate, are organic chemical absorbers or "blockers". They are contrasted with inorganic absorbers/"blockers" of UV radiation such as titanium dioxide and zinc oxide.
For clothing, the ultraviolet protection factor represents the ratio of sunburn-causing UV without and with the protection of the fabric, similar to sun protection factor ratings for sunscreen. Standard summer fabrics have UPFs around 6, which means that about 20% of UV will pass through.
Suspended nanoparticles in stained-glass prevent UV rays from causing chemical reactions that change image colors. A set of stained-glass color-reference chips is planned to be used to calibrate the color cameras for the 2019 ESA Mars rover mission, since they will remain unfaded by the high level of UV present at the surface of Mars.
Common soda–lime glass, such as window glass, is partially transparent to UVA, but is opaque to shorter wavelengths, passing about 90% of the light above 350 nm, but blocking over 90% of the light below 300 nm. A study found that car windows allow 3–4% of ambient UV to pass through, especially if the UV was greater than 380 nm. Other types of car windows can reduce transmission of UV that is greater than 335 nm. Fused quartz, depending on quality, can be transparent even to vacuum UV wavelengths. Crystalline quartz and some crystals such as CaF2 and MgF2 transmit well down to 150 nm or 160 nm wavelengths.
Wood's glass is a deep violet-blue barium-sodium silicate glass with about 9% nickel oxide developed during World War I to block visible light for covert communications. It allows both infrared daylight and ultraviolet night-time communications by being transparent between 320 nm and 400 nm and also the longer infrared and just-barely-visible red wavelengths. Its maximum UV transmission is at 365 nm, one of the wavelengths of mercury lamps.