Electric power transmission


Electric power transmission is the bulk movement of electrical energy from a generating site, such as a power plant, to an electrical substation. The interconnected lines that facilitate this movement form a transmission network. This is distinct from the local wiring between high-voltage substations and customers, which is typically referred to as electric power distribution. The combined transmission and distribution network is part of electricity delivery, known as the electrical grid.
Efficient long-distance transmission of electric power requires high voltages. This reduces the losses produced by strong currents. Transmission lines use either alternating current or direct current. The voltage level is changed with transformers. The voltage is stepped up for transmission, then reduced for local distribution.
A wide area synchronous grid, known as an interconnection in North America, directly connects generators delivering AC power with the same relative frequency to many consumers. North America has four major interconnections: Western, Eastern, Quebec and Texas. One grid connects most of continental Europe.
Historically, transmission and distribution lines were often owned by the same company, but starting in the 1990s, many countries liberalized the regulation of the electricity market in ways that led to separate companies handling transmission and distribution.

System

Most North American transmission lines are high-voltage three-phase AC, although single phase AC is sometimes used in railway electrification systems. DC technology is used for greater efficiency over longer distances, typically hundreds of miles. High-voltage direct current technology is also used in submarine power cables, and in the interchange of power between grids that are not mutually synchronized. HVDC links stabilize power distribution networks where sudden new loads, or blackouts, in one part of a network might otherwise result in synchronization problems and cascading failures.
Electricity is transmitted at high voltages to reduce the energy loss due to resistance that occurs over long distances. Power is usually transmitted through overhead power lines. Underground power transmission has a significantly higher installation cost and greater operational limitations, but lowers maintenance costs. Underground transmission is more common in urban areas or environmentally sensitive locations.
Electrical energy must typically be generated at the same rate at which it is consumed. A sophisticated control system is required to ensure that power generation closely matches demand. If demand exceeds supply, the imbalance can cause generation plant and transmission equipment to automatically disconnect or shut down to prevent damage. In the worst case, this may lead to a cascading series of shutdowns and a major regional blackout.
The US Northeast faced blackouts in 1965, 1977, 2003, and major blackouts in other US regions in 1996 and 2011. Electric transmission networks are interconnected into regional, national, and even continent-wide networks to reduce the risk of such a failure by providing multiple redundant, alternative routes for power to flow should such shutdowns occur. Transmission companies determine the maximum reliable capacity of each line to ensure that spare capacity is available in the event of a failure in another part of the network.

Overhead

High-voltage overhead conductors are not covered by insulation. The conductor material is usually an aluminium alloy, formed of several strands and possibly reinforced with steel strands. Copper was sometimes used for overhead transmission, but aluminum is lighter, reduces yields only marginally and costs much less. Overhead conductors are supplied by several companies. Conductor material and shapes are regularly improved to increase capacity.
Conductor sizes range from 12 mm2 to 1,092 mm2, with varying resistance and current-carrying capacity. For large conductors, much of the current flow is concentrated near the surface due to the skin effect. The center of the conductor carries little current but contributes weight and cost. Thus, multiple parallel cables are used for higher capacity. Bundle conductors are used at high voltages to reduce energy loss caused by corona discharge.
Today, transmission-level voltages are usually considered to be 110 kV and above. Lower voltages, such as 66 kV and 33 kV, are usually considered subtransmission voltages, but are occasionally used on long lines with light loads. Voltages less than 33 kV are usually used for distribution. Voltages above 765 kV are considered extra high voltage and require different designs.
Overhead transmission wires depend on air for insulation, requiring that lines maintain minimum clearances. Adverse weather conditions, such as high winds and low temperatures, interrupt transmission. Wind speeds as low as can permit conductors to encroach operating clearances, resulting in a flashover and loss of supply. Oscillatory motion of the physical line is termed conductor gallop or flutter depending on the frequency and amplitude of oscillation.

Underground

Electric power can be transmitted by underground power cables. Underground cables take up no right-of-way, have lower visibility, and are less affected by weather. However, cables must be insulated. Cable and excavation costs are much higher than overhead construction. Faults in buried transmission lines take longer to locate and repair.
In some metropolitan areas, cables are enclosed by metal pipe and insulated with dielectric fluid that is either static or circulated via pumps. If an electric fault damages the pipe and leaks dielectric, liquid nitrogen is used to freeze portions of the pipe to enable draining and repair. This extends the repair period and increases costs. The temperature of the pipe and surroundings are monitored throughout the repair period.
Underground lines are limited by their thermal capacity, which permits less overload or re-rating lines. Long underground AC cables have significant capacitance, which reduces their ability to provide useful power beyond. DC cables are not limited in length by their capacitance.

History

Commercial electric power was initially transmitted at the same voltage used by lighting and mechanical loads. This restricted the distance between generating plant and loads. In 1882, DC voltage could not easily be increased for long-distance transmission. Different classes of loads required different voltages, and so used different generators and circuits.
Thus, generators were sited near their loads, a practice that later became known as distributed generation using large numbers of small generators.
Transmission of alternating current became possible after Lucien Gaulard and John Dixon Gibbs built what they called the secondary generator, an early transformer provided with 1:1 turn ratio and open magnetic circuit, in 1881.
The first long distance AC line was long, built for the 1884 International Exhibition of Electricity in Turin, Italy. It was powered by a 2 kV, 130 Hz Siemens & Halske alternator and featured several Gaulard transformers with primary windings connected in series, which fed incandescent lamps. The system proved the feasibility of AC electric power transmission over long distances.
The first commercial AC distribution system entered service in 1885 in via dei Cerchi, Rome, Italy, for public lighting. It was powered by two Siemens & Halske alternators rated 30 hp, 2 kV at 120 Hz and used 19 km of cables and 200 parallel-connected 2 kV to 20 V step-down transformers provided with a closed magnetic circuit, one for each lamp. A few months later it was followed by the first British AC system, serving Grosvenor Gallery. It also featured Siemens alternators and 2.4 kV to 100 V step-down transformers - one per user - with shunt-connected primaries.
Working to improve what he considered an impractical Gaulard-Gibbs design, electrical engineer William Stanley, Jr. developed the first practical series AC transformer in 1885. Working with the support of George Westinghouse, in 1886 he demonstrated a transformer-based AC lighting system in Great Barrington, Massachusetts. It was powered by a steam engine-driven 500 V Siemens generator. Voltage was stepped down to 100 volts using the Stanley transformer to power incandescent lamps at 23 businesses over. This practical demonstration of a transformer and alternating current lighting system led Westinghouse to begin installing AC systems later that year.
In 1888 the first designs for an AC motor appeared. These were induction motors running on polyphase current, independently invented by Galileo Ferraris and Nikola Tesla. Westinghouse licensed Tesla's design. Practical three-phase motors were designed by Mikhail Dolivo-Dobrovolsky and Charles Eugene Lancelot Brown. Widespread use of such motors were delayed many years by development problems and the scarcity of polyphase power systems needed to power them.
File:Tesla polyphase AC 500hp generator at 1893 exposition.jpg|thumb|right|Westinghouse alternating current polyphase generators on display at the 1893 World's Fair in Chicago, part of their Tesla Poly-phase System. Such polyphase innovations revolutionized transmission.
In the late 1880s and early 1890s smaller electric companies merged into larger corporations such as Ganz and AEG in Europe and General Electric and Westinghouse Electric in the US. These companies developed AC systems, but the technical difference between direct and alternating current systems required a much longer technical merger. Alternating current's economies of scale with large generating plants and long-distance transmission slowly added the ability to link all the loads. These included single phase AC systems, poly-phase AC systems, low voltage incandescent lighting, high-voltage arc lighting, and existing DC motors in factories and street cars. In what became a universal system, these technological differences were temporarily bridged via the rotary converters and motor-generators that allowed the legacy systems to connect to the AC grid. These stopgaps were slowly replaced as older systems were retired or upgraded.
The first transmission of single-phase alternating current using high voltage came in Oregon in 1890 when power was delivered from a hydroelectric plant at Willamette Falls to the city of Portland down river. The first three-phase alternating current using high voltage took place in 1891 during the international electricity exhibition in Frankfurt. A 15 kV transmission line, approximately 175 km long, connected Lauffen on the Neckar and Frankfurt.
Transmission voltages increased throughout the 20th century. By 1914, fifty-five transmission systems operating at more than 70 kV were in service. The highest voltage then used was 150 kV. Interconnecting multiple generating plants over a wide area reduced costs. The most efficient plants could be used to supply varying loads during the day. Reliability was improved and capital costs were reduced, because stand-by generating capacity could be shared over many more customers and a wider area. Remote and low-cost sources of energy, such as hydroelectric power or mine-mouth coal, could be exploited to further lower costs.
The 20th century's rapid industrialization made electrical transmission lines and grids critical infrastructure. Interconnection of local generation plants and small distribution networks was spurred by World War I, when large electrical generating plants were built by governments to power munitions factories.