High-occupancy vehicle lane


A high-occupancy vehicle lane is a restricted traffic lane reserved for the exclusive use of vehicles with a driver and at least one passenger, including carpools, vanpools, and transit buses. These restrictions may be only imposed during peak travel times or may apply at all times. There are different types of lanes: temporary or permanent lanes with concrete barriers, two-directional or reversible lanes, and exclusive, concurrent, or contraflow lanes working in peak periods.
The normal minimum occupancy level is two or three occupants. Many jurisdictions exempt other vehicles, including motorcycles, charter buses, emergency and law enforcement vehicles, low-emission and other green vehicles, and/or single-occupancy vehicles paying a toll. HOV lanes are normally introduced to increase average vehicle occupancy and persons traveling with the goal of reducing traffic congestion and air pollution.

History

United States

The introduction of HOV lanes in the United States progressed slowly during the 1970s and early 1980s. Major growth occurred from the mid-1980s to the late 1990s. The first freeway HOV lane in the United States was implemented in the Henry G. Shirley Memorial Highway in Northern Virginia, between Washington, DC, and the Capital Beltway, and was opened in 1969 as a bus-only lane. The busway was opened in December 1973 to carpools with four or more occupants, becoming the first instance in which buses and carpools officially shared a HOV lane over a considerable distance.
In 2005, the two lanes of this HOV 3+ facility carried during the morning peak hour a total of 31,700 people in 8,600 vehicles, while the three or four general-purpose lanes carried 23,500 people in 21,300 vehicles. Average travel time in the HOV facility was 29 minutes, and 64 minutes in the general traffic lanes. As of 2012, the I-95/I-395 HOV facility is long, extends from Washington, D.C., to Dumfries, Virginia, and has two reversible lanes separated from the regular lanes by barriers, with access through elevated on- and off-ramps. Three or more people in a vehicle are required to travel on the facility during rush hours on weekdays.
The second freeway HOV facility, which opened in 1970, was the contraflow bus lane on the Lincoln Tunnel Approach and Helix in Hudson County, New Jersey. According to the Federal Highway Administration, the Lincoln Tunnel XBL is the country's HOV facility with the highest number of peak hour persons among HOV facilities with utilization data available, with 23,500 persons in the morning peak, and 62,000 passengers during the four-hour morning peak.
The first permanent HOV facility in California was the bypass lane at the San Francisco–Oakland Bay Bridge toll plaza, opened to the public in April 1970. The El Monte Busway in Los Angeles was initially only available for buses when it opened in 1973. Three-person carpools were allowed to use the bus lane for three months in 1974 due to a strike by bus operators, and then permanently at a 3+ HOV from 1976. It is one of the most efficient HOV facilities in North America and was converted into a high-occupancy toll lane operation in 2013 to allow low-occupancy vehicles to bid for excess capacity on the lane in the Metro ExpressLanes project.
Beginning in the 1970s, the Urban Mass Transportation Administration recognized the advantages of exclusive bus lanes and encouraged their funding. In the 1970s the FHWA began to allow state highway agencies to spend federal funds on HOV lanes. As a result of the 1973 Arab Oil Embargo, interest in ridesharing picked up, and states began experimenting with HOV lanes. In order to reduce crude oil consumption, the 1974 Emergency Highway Energy Conservation Act mandated maximum speed limits of on public highways and became the first instance when the U.S. federal government provided funding for ridesharing and states were allowed to spend their highway funds on rideshare demonstration projects. The 1978 Surface Transportation Assistance Act made funding for rideshare initiatives permanent.
Also during the early 1970s, ridesharing was recommended for the first time as a tool to mitigate air quality problems. The 1970 Clean Air Act Amendments established the National Ambient Air Quality Standards and gave the Environmental Protection Agency substantial authority to regulate air quality attainment. A final control plan for the Los Angeles Basin was issued in 1973, and one of its main provisions was a two-phase conversion of of freeway and arterial roadway lanes to bus/carpool lanes and the development of a regional computerized carpool matching system. However, it took until 1985 before any HOV project was constructed in Los Angeles County, and by 1993 there were only of HOV lanes countywide.
A significant policy shift took place in October 1990, when a memorandum from the FHWA administrator stated that "FHWA strongly supports the objective of HOV preferential facilities and encourages the proper application of HOV technology." Regional administrators were directed to promote HOV lanes and related facilities. Also in the early 1990s, two laws reinforced the U.S. commitment to HOV lane construction. The Clean Air Act Amendments of 1990 included HOV lanes as one of the transportation control measures that could be included in state implementation plans to attain federal air quality standards. The 1990 amendments also deny the administrator of the EPA the authority to block FHWA from funding 24-hour HOV lanes as part of the sanctions for a state's failure to comply with the Clean Air Act, if the secretary of transportation wishes to approve the FHWA funds.
On the other hand, the Intermodal Surface Transportation Efficiency Act of 1991 encouraged the construction of HOV lanes, which were made eligible for Congestion Mitigation and Air Quality funds in regions not attaining federal air quality standards. CMAQ funds may be spent on new HOV lane construction, even if the HOV designation holds only at peak travel times or in the peak direction. ISTEA also provided that under the Interstate Maintenance Program, only HOV projects would receive the 90% federal matching ratio formerly available for the addition of general purpose lanes. ISTEA, in addition, permitted state authorities to define a high occupancy vehicle as having a minimum of two occupants.
As of 2009, California was the state with the most HOV facilities in the country, with 88, followed by Minnesota with 83 facilities, Washington with 41, Texas with 35, and Virginia with 21. By 2006, HOV lanes in California were operating at two-thirds of their capacity, and these HOV facilities carried on average 2,518 persons per hour during peak hours, substantially more people than the congested general-traffic lanes.File:HOT Capital Beltway Panorama 5.jpg|thumb|337x337px|left|The I-495 Capital Beltway in the Washington D.C. Metropolitan Area. The facility is located in the median, has two HOV lanes in each direction with elevated on/off ramp access with a total of of lanes.
As of October 2016, the longest continuous HOV facility in the U.S. is on I-15 in Utah, extending approximately from Layton to Spanish Fork with a single HOV lane in each direction for a total of of HOV lanes. While the Utah facility is the longest, the I-495 Capital Beltway in the Washington, D.C., Metropolitan Area extends but has two HOV lanes in each direction for a total of of HOV lanes.
On October 24, 2023, Michigan opened its first-ever HOV lanes on a portion of I-75 in Oakland County from South Boulevard in Bloomfield Township to 12 Mile Road in Madison Heights as part of a freeway modernization project. One lane in both directions is restricted to HOV use from 6 a.m. to 9 a.m. and from 3 p.m. to 6 p.m. Monday through Friday, while all other drivers regardless of the number of occupants in their vehicle can freely use the lanes outside of those hours.

Canada

The first HOV facilities in Canada were opened in Greater Vancouver and Toronto in the early 1990s, followed shortly by facilities in Ottawa, Gatineau, Montreal, and later Calgary. As of 2010 there were about of highway HOV lanes in 11 locations in British Columbia, Ontario, and Quebec, and over of arterial HOV lanes in 24 locations in Greater Vancouver, Calgary, Toronto, Ottawa, and Gatineau. The Ontario Ministry of Transportation in 2006 estimated that commuters in Toronto using the HOV facilities on Highways 403 and 404 were saving 14–17 minutes per trip compared to their travel time before the HOV lanes opened. The MTO also estimated that almost 40% of commuters were carpooling on Highway 403 eastbound in the morning peak hour, compared to 14% in 2003, and 37% of commuters were carpooling on Highway 403 westbound in the afternoon peak hour, compared to 22% in 2003. The average rush hour speed on the HOV lanes is, compared to in general-traffic lanes on Highway 403.
Temporary HOV lanes were added to selections of 400-series highways in the Greater Toronto Area for the 2015 Pan American Games and 2015 Parapan American Games.

Europe

As of 2012, there are a few HOV lanes in operation in Europe. The main reason for this is that, in general, European cities have better public transport services and fewer high-capacity multi-lane urban motorways than do the U.S. and Canada. However, at around 1.3 persons per vehicle, average car occupancy is relatively low in most European cities. The emphasis in Europe has been on providing bus lanes and on-street bus priority measures.
The first HOV lane in Europe was opened in the Netherlands in October 1993 and operated until August 1994. Its facility was a barrier-separated HOV 3+ on the A1 near Amsterdam. The facility did not attract enough users to overcome public criticism and was converted to a reversible lane open to general traffic after the judge in a legal test case ruled that Dutch traffic law lacked the concept of a car pool and thus that the principle of equality was violated.
Spain was the next European country to introduce HOV lanes, when median reversible Bus-VAO lanes were opened in Madrid's A-6 in 1995. This facility is Europe's oldest HOV facility that is still in operation.
The first HOV facility in the United Kingdom opened in Leeds in 1998. The facility was implemented on A647 road near Leeds as an experimental scheme. The HOV facility was long and operated as a HOV 2+ lane until the early 2020s. By 2022, this had been converted into a full-time bus lane.
A HOV 3+ facility opened in Linz, Austria, in 1999.
The first HOV lane in Norway was implemented in May 2001 as an HOV 3+ on Elgeseter Street, an undivided four-lane arterial road in Trondheim. This facility was followed by HOV lanes in Oslo and Kristiansand.