Threading (manufacturing)


In manufacturing, threading is the process of creating a screw thread. More screw threads are produced each year than any other machine element. There are many methods of generating threads, including subtractive methods ; deformative or transformative methods ; additive methods ; or combinations thereof.

Overview of methods (comparison, selection, etc.)

There are various methods for generating screw threads. The method for any one application is chosen based on constraints—time, money, degree of precision needed, what equipment is already available, what equipment purchases could be justified based on resulting unit price of the threaded part, etc.
In general, certain thread-generating processes tend to fall along certain portions of the spectrum from toolroom-made parts to mass-produced parts, although there can be considerable overlap. For example, thread lapping following thread grinding would fall only on the extreme toolroom end of the spectrum, while thread rolling is a large and diverse area of practice that is used for everything from microlathe leadscrews to the cheapest deck screws.
Threads of metal fasteners are usually created on a thread rolling machine. They may also be cut with a lathe, tap or die. Rolled threads are stronger than cut threads, with increases of 10% to 20% in tensile strength and possibly more in fatigue resistance and wear resistance.
Thread milling has a better thread quality than cut tapping as it offers better chip evacuation. Cut tapping uses a tool the same size as the thread, forcing the chip through the thread for evacuation.

Subtractive methods

Thread cutting

Thread cutting, as compared to thread forming and rolling, is used when full thread depth is required, when the quantity is small, when the blank is not very accurate, when threading up to a shoulder is required, when threading a tapered thread, or when the material is brittle.

Taps and dies

A common method of threading is cutting with taps and dies. Unlike drill bits, hand taps do not automatically remove the chips they create. A hand tap cannot cut its threads in a single rotation because it creates long chips which quickly jam the tap, possibly breaking it. Therefore, in manual thread cutting, normal wrench usage is to cut the threads 1/2 to 2/3 of a turn, then reverse the tap for about 1/6 of a turn until the chips are broken by the back edges of the cutters. It may be necessary to periodically remove the tap from the hole to clear the chips, especially when a blind hole is threaded.
For continuous tapping operations specialized spiral point or "gun" taps are used to eject the chips and prevent crowding.

Single-point threading

Single-point threading, also colloquially called single-pointing, is an operation that uses a single-point tool to produce a thread form on a cylinder or cone. The tool moves linearly while the precise rotation of the workpiece determines the lead of the thread. The process can be done to create external or internal threads. In external thread cutting, the piece can either be held in a chuck or mounted between two centers. With internal thread cutting, the piece is held in a chuck. The tool moves across the piece linearly, taking chips off the workpiece with each pass. Usually 5 to 7 light cuts create the correct depth of the thread.
The coordination of various machine elements including leadscrew, slide rest, and change gears was the technological advance that allowed the invention of the screw-cutting lathe, which was the origin of single-point threading as we know it today.
Today, engine lathes and CNC lathes are the commonly used machines for single-point threading. On CNC machines, the process is quick and easy due to the machine's ability to constantly track the relationship of the tool position and spindle position. CNC software includes "canned cycles", that is, preprogrammed subroutines, that obviate the manual programming of a single-point threading cycle. Parameters are entered, and the machine does the rest.
All threading could feasibly be done using a single-point tool, but because of the high speed and thus low unit cost of other methods, single-point threading is usually only used when other factors of the manufacturing process happen to favor it

Thread milling

Threads may be milled with a rotating milling cutter if the correct helical toolpath can be arranged. This was formerly arranged mechanically, and it was suitable for mass-production work although uncommon in job-shop work. With the widespread dissemination of affordable, fast, precise CNC, it became much more common, and today internal and external threads are often milled even on work where they would formerly have been cut with taps, die heads, or single-pointing. Some advantages of thread milling, as compared to single-point cutting or taps and dies, are faster cycle times, less tool breakage, and that a left- or right-hand thread can be created with the same tool. Additionally, for large, awkward workpieces, it is simply easier to let the workpiece sit stationary on a table while all needed machining operations are performed on it with rotating tools, as opposed to rigging it up for rotation around the axis of each set of threads.
There are various types of thread milling, including several variants of form-milling and a combination of drilling and threading with one cutter, called thrilling.
One main advantage against tapping, is that tapping only starts making a complete thread profile on the third thread, whereas thread milling will produce a complete thread profile from the top to the bottom.
Form-milling uses either a single- or multiple-form cutter. In one variant of form-milling, the single-form cutter is tilted to the helix angle of the thread and then fed radially into the blank. The blank is then slowly rotated as the cutter is precisely moved along the axis of the blank, which cuts the thread into the blank. This can be done in one pass, if the cutter is fed to the full thread depth, or in two passes, with the first not being to the full thread depth. This process is mainly used on threads larger than. It is commonly used to cut large-lead or multiple-lead threads. A similar variant using a multiple-form cutter exists, in which the process completes the thread in one revolution around the blank. The cutter must be longer than the desired thread length. Using a multiple-form cutter is faster than using a single-form cutter but it is limited to threads with a helix angle less than 3°. It is also limited to blanks of a substantial diameter and no longer than.
Another variant of form-milling involves holding the cutter's axis orthogonally and feeding the cutter in a toolpath that will generate the thread. The part is usually a stationary workpiece, such as a boss on a valve body or a hole in a plate or block. This type of thread milling uses essentially the same concept as contouring with an endmill or ball-nose mill, but the cutter and toolpath are arranged specifically to define the "contour" of a thread. The toolpath is achieved either using helical interpolation or a simulation of it using extremely small increments of 3-axes linear interpolation. The cutter geometry reflects the thread pitch but not its lead; the lead is determined by the toolpath. Tapered threads can be cut either with a tapered multiple-form cutter that completes the thread in one revolution using helical interpolation, or with a straight or tapered cutter whose toolpath is one or more revolutions but cannot use helical interpolation and must use CAD/CAM software to generate a contour-like simulation of helical interpolation.
The tooling used for thread milling can be solid or indexable. For internal threads, solid cutters are generally limited to holes larger than, and indexable internal thread cutting tools are limited to holes larger than. The advantage is that when the insert wears out it is easily and more cost effectively replaced. The disadvantage is the cycle time is generally longer than solid tools. Note that solid multiple-form thread cutting tools look similar to taps, but they differ in that the cutting tool does not have a backtaper and there is not a lead-in chamfer. This lack of a lead-in chamfer allows the threads to be formed within one pitch length of the bottom of a blind hole.
Thrilling
Thrilling is the process of threading and drilling internal threads using a specialized cutting tool on a CNC mill. The cutting tool tip is shaped like a drill or center-cutting endmill, while the body has a thread-shaped form with a countersink cutter form near the shank. The cutter first plunges to drill the hole. Then the thread is circularly interpolated just like the multiple-form cutter described above. This tool drills, chamfers, and threads a hole all in one compact cycle. The advantage is this process eliminates a tool, tool-holder, and tool change. The disadvantage is that the process is limited to hole depth no greater than three times the diameter of the tool.

Helical broaching (Punch Tap)

A method of helical broaching was developed in the 2010s that shortens the toolpath of tapping. To a casual observer, it looks rather similar to traditional tapping but with faster movement into and out of the hole. It uses a specific tool geometry and toolpath to position rapidly, broach the thread in a single half-turn, and then retract rapidly, shortening the cycle time and consuming less energy. It reduces the cost of threading for any holes that can safely allow the two small fast-helix grooves that it leaves behind along with the thread, which could be true in many applications.

Thread grinding

Thread grinding is done on a grinding machine using specially dressed grinding wheels matching the shape of the threads. The process is usually used to produce accurate threads or threads in hard materials; a common application is ball screw mechanisms. There are three types: center-type grinding with axial feed, center-type infeed thread grinding and centerless thread grinding. Center-type grinding with an axial feed is the most common of the three. It is similar to cutting a thread on a lathe with a single-point cutting tool, except the cutting tool is replaced with a grinding wheel. Usually a single ribbed wheel is used, although multiple ribbed wheels are also available. To complete the thread multiple passes are commonly required. Center-type infeed thread grinding use a grinding wheel with multiple ribs that is longer than the length of the desired thread. First, the grinding wheel is fed into the blank to the full thread depth. Then the blank is slowly rotated through approximately 1.5 turns while axially advancing through one pitch per revolution. Finally, the centerless thread grinding process is used to make head-less set screws in a similar method as centerless grinding. The blanks are hopper-fed to the grinding wheels, where the thread is fully formed. Common centerless thread grinding production rates are 60 to 70 pieces per minute for a long set screw.