Giant-impact hypothesis
The giant-impact hypothesis, sometimes called the Theia Impact, is an astrogeology hypothesis for the formation of the Moon first proposed in 1946 by Canadian geologist Reginald Daly. The hypothesis suggests that the Proto-Earth collided with a Mars-sized co-orbital protoplanet likely from the L4 or L5 Lagrange points of the Earth's orbit approximately 4.5 billion years ago in the early Hadean eon, and some of the ejected debris from the impact event later re-accreted to form the Moon. The impactor planet is sometimes called Theia, named after the mythical Greek Titan who was the mother of Selene, the goddess of the Moon.
Analysis of lunar rocks published in a 2016 report suggests that the impact might have been a direct hit, causing a fragmentation and thorough mixing of both parent bodies.
The giant-impact hypothesis is currently the favored hypothesis for lunar formation among astronomers. Evidence that supports this hypothesis includes:
- The Moon's orbit has a similar orientation to Earth's rotation, both of which are at a similar angle to the ecliptic plane of the Solar System.
- The stable isotope ratios of lunar and terrestrial rock are identical, implying a common origin.
- The Earth–Moon system contains an anomalously high angular momentum, meaning the momentum contained in Earth's rotation, the Moon's rotation and the Moon revolving around Earth is significantly higher than the other terrestrial planets. A giant impact might have supplied this excess momentum.
- Moon samples indicate that the Moon was once molten to a substantial, but unknown, depth. This might have required much more energy than predicted to be available from the accretion of a celestial body of the Moon's size and mass. An extremely energetic process, such as a giant impact, could provide this energy.
- The Moon has a relatively small iron core, which gives it a much lower density than Earth. Computer models of a giant impact of a Mars-sized body with Earth indicate the impactor's core would likely penetrate deep into Earth and fuse with its own core. This would leave the Moon, which was formed from coalesced ejectae of lighter crustal and mantle fragments that went far enough beyond the Roche limit and thus were not pulled back by Earth's gravity to re-fuse with Earth, with less remaining metallic iron than other planetary bodies.
- The Moon is depleted in volatile substances compared to Earth. Vaporizing at comparably lower temperatures, they could be lost in a high-energy event, with the Moon's smaller gravity unable to recapture them while Earth did.
- There is evidence in other star systems of similar collisions, resulting in debris discs.
- Giant collisions are consistent with the leading theory of the formation of the Solar System.
History
In 1898, George Darwin made the suggestion that Earth and the Moon were once a single body. Darwin's hypothesis was that a molten Moon had been spun from Earth because of centrifugal forces, and this became the dominant academic explanation. Using Newtonian mechanics, he calculated that the Moon had orbited much more closely in the past and was drifting away from Earth. This drifting was later confirmed by American and Soviet experiments, using laser ranging targets placed on the Moon.Nonetheless, Darwin's calculations could not resolve the mechanics required to trace the Moon back to the surface of Earth. In 1946, Reginald Aldworth Daly of Harvard University challenged Darwin's explanation, adjusting it to postulate that the creation of the Moon was caused by an impact rather than centrifugal forces. Little attention was paid to Professor Daly's challenge until a conference on satellites in 1974, during which the idea was reintroduced and later published and discussed in Icarus in 1975 by William K. Hartmann and Donald R. Davis. Their models suggested that, at the end of the planet formation period, several satellite-sized bodies had formed that could collide with the planets or be captured. They proposed that one of these objects might have collided with Earth, ejecting refractory, volatile-poor dust that could coalesce to form the Moon. This collision could potentially explain the unique geological and geochemical properties of the Moon.
A similar approach was taken by Canadian astronomer Alastair G. W. Cameron and American astronomer William R. Ward, who suggested that the Moon was formed by the tangential impact upon Earth of a body the size of Mars. It is hypothesized that most of the outer silicates of the colliding body would be vaporized, whereas a metallic core would not. Hence, most of the collisional material sent into orbit would consist of silicates, leaving the coalescing Moon deficient in iron. The more volatile materials that were emitted during the collision probably would escape the Solar System, whereas silicates would tend to coalesce.
Eighteen months prior to an October 1984 conference on lunar origins, Bill Hartmann, Roger Phillips, and Jeff Taylor challenged fellow lunar scientists: "You have eighteen months. Go back to your Apollo data, go back to your computer, and do whatever you have to, but make up your mind. Don't come to our conference unless you have something to say about the Moon's birth." At the 1984 conference at Kona, Hawaii, the giant-impact hypothesis emerged as the most favored hypothesis.
Theia
The name of the hypothesised protoplanet is derived from the mythical Greek titan Theia, who gave birth to the Moon goddess Selene. This designation was proposed initially by the English geochemist Alex N. Halliday in 2000 and has become accepted in the scientific community. According to modern theories of planet formation, Theia was part of a population of Mars-sized bodies that existed in the Solar System 4.5 billion years ago. Theia is hypothesized to have orbited in the L4 or L5 configuration presented by the Earth–Sun system, where it would tend to remain. One of the attractive features of the giant-impact hypothesis is that the formation of the Moon and Earth align; during the course of its formation, Earth is thought to have experienced dozens of collisions with planet-sized bodies. The Moon-forming collision would have been only one such "giant impact" but certainly the last significant impactor event. The Late Heavy Bombardment by much smaller asteroids may have occurred laterapproximately 3.9 billion years ago.Basic model
Astronomers think the collision between Earth and Theia happened at about 4.4 to 4.45 billion years ago ; about 0.1 billion years after the Solar System began to form. In astronomical terms, the impact would have been of moderate velocity. Theia is thought to have struck Earth at an oblique angle when Earth was nearly fully formed. Computer simulations of this "late-impact" scenario suggest an initial impactor velocity below at "infinity", increasing as it approached to over at impact, and an impact angle of about 45°. However, oxygen isotope abundance in lunar rock suggests "vigorous mixing" of Theia and Earth, indicating a steep impact angle. Theia's iron core would have sunk into the young Earth's core, and most of Theia's mantle accreted onto Earth's mantle. However, a significant portion of the mantle material from both Theia and Earth would have been ejected into orbit around Earth or into individual orbits around the Sun.Modelling has hypothesised that material in orbit around Earth may have accreted to form the Moon in three consecutive phases, accreting first from the bodies initially present outside Earth's Roche limit, which acted to confine the inner disk material within the Roche limit. The inner disk slowly and viscously spread back out to Earth's Roche limit, pushing along outer bodies via resonant interactions. After several tens of years, the disk spread beyond the Roche limit, and started producing new objects that continued the growth of the Moon, until the inner disk was depleted in mass after several hundreds of years. Material in stable Kepler orbits was thus likely to hit the Earth–Moon system sometime later. Estimates based on computer simulations of such an event suggest that some twenty percent of the original mass of Theia would have ended up as an orbiting ring of debris around Earth, and about half of this matter coalesced into the Moon. Earth would have gained significant amounts of angular momentum and mass from such a collision. Regardless of the speed and tilt of Earth's rotation before the impact, it would have experienced a day some five hours long after the impact, and Earth's equator and the Moon's orbit would have become coplanar.
Not all of the ring material need have been swept up right away: the thickened crust of the Moon's far side suggests the possibility that a second moon about in diameter formed in a Lagrange point of the Moon. The smaller moon may have remained in orbit for tens of millions of years. As the two moons migrated outward from Earth, solar tidal effects would have made the Lagrange orbit unstable, resulting in a slow-velocity collision that "pancaked" the smaller moon onto what is now the far side of the Moon, adding material to its crust.
Lunar magma cannot pierce through the thick crust of the far side, causing fewer lunar maria, while the near side has a thin crust displaying the large maria visible from Earth.
Above a high resolution threshold for simulations, a study published in 2022 finds that giant impacts can immediately place a satellite with similar mass and iron content to the Moon into orbit far outside Earth's Roche limit. Even satellites that initially pass within the Roche limit can reliably and predictably survive, by being partially stripped and then torqued onto wider, stable orbits. Furthermore, the outer layers of these directly formed satellites are molten over cooler interiors and are composed of around 60% proto-Earth material. This could alleviate the tension between the Moon's Earth-like isotopic composition and the different signature expected for the impactor. Immediate formation opens up new options for the Moon's early orbit and evolution, including the possibility of a highly tilted orbit to explain the lunar inclination, and offers a simpler, single-stage scenario for the origin of the Moon.