Universe


The universe is all of space and time and their contents. It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of matter and energy, and the structures they form, from sub-atomic particles to entire galactic filaments. Since the early 20th century, the field of cosmology establishes that space and time emerged together at the Big Bang ago and that the universe has been expanding since then. The portion of the universe that can be seen by humans is approximately 93 billion light-years in diameter at present, but the total size of the universe is not known.
Some of the earliest cosmological models of the universe were geocentric, placing Earth at the center. During the European Scientific Revolution, astronomical observations led to a heliocentric model. Further observational improvements led to the realization that the Sun is one of a few hundred billion stars in the Milky Way, which is one of a few hundred billion galaxies in the observable universe. Many of the stars in a galaxy have planets. At the largest scale, galaxies are distributed uniformly and the same in all directions, meaning that the universe has neither an edge nor a center. At smaller scales, galaxies are distributed in clusters and superclusters, which form immense filaments and voids in space, creating a vast foam-like structure. Discoveries in the early 20th century lead to the Big Bang theory with a hot fireball, cooling and becoming less dense as the universe expanded, allowing the first subatomic particles and simple atoms to form. Giant clouds of hydrogen and helium were gradually drawn to the places where matter was most dense, forming the first galaxies, stars, and everything else seen today.
From studying the effects of gravity on both matter and light, it has been discovered that the universe contains much more matter than is accounted for by visible objects; stars, galaxies, nebulae and interstellar gas. This unseen matter is known as dark matter. In the widely accepted ΛCDM cosmological model, dark matter accounts for about of the mass and energy in the universe while about is dark energy, a mysterious form of energy responsible for the acceleration of the expansion of the universe. Ordinary matter therefore composes only of the universe. Stars, planets, and visible gas clouds only form about 6% of this ordinary matter.
There are many competing hypotheses about the ultimate fate of the universe and about what, if anything, preceded the Big Bang, while other physicists and philosophers refuse to speculate, doubting that information about prior states will ever be accessible. Some physicists have suggested various multiverse hypotheses, in which the universe might be one among many.

Definition

The physical universe is defined as all of space and time and their contents. Such contents comprise all of energy in its various forms, including electromagnetic radiation and matter, and therefore planets, moons, stars, galaxies, and the contents of intergalactic space. The universe also includes the physical laws that influence energy and matter, such as conservation laws, classical mechanics, and relativity.
The universe is often defined as "the totality of existence", or everything that exists, everything that has existed, and everything that will exist. In fact, some philosophers and scientists support the inclusion of ideas and abstract concepts—such as mathematics and logic—in the definition of the universe. The word universe may also refer to concepts such as the cosmos, the world, and nature.

Etymology

The word universe derives from the Old French word univers, which in turn derives from the Latin word universus, meaning 'combined into one'. The Latin word 'universum' was used by Cicero and later Latin authors in many of the same senses as the modern English word is used.

Synonyms

A term for universe among the ancient Greek philosophers from Pythagoras onwards was τὸ πᾶν 'the all', defined as all matter and all space, and τὸ ὅλον 'all things', which did not necessarily include the void. Another synonym was ὁ κόσμος meaning 'the world, the cosmos'. Synonyms are also found in Latin authors and survive in modern languages, e.g., the German words Das All, Weltall, and Natur for universe. The same synonyms are found in English, such as everything, the cosmos, the world, and nature.

Chronology and the Big Bang

The prevailing model for the evolution of the universe is the Big Bang theory. The Big Bang model states that the earliest state of the universe was an extremely hot and dense one, and that the universe subsequently expanded and cooled. The model is based on general relativity and on simplifying assumptions such as the homogeneity and isotropy of space. A version of the model with a cosmological constant and cold dark matter, known as the Lambda-CDM model, is the simplest model that provides a reasonably good account of various observations about the universe.
The initial hot, dense state is called the Planck epoch, a brief period extending from time zero to one Planck time unit of approximately 10−43 seconds. During the Planck epoch, all types of matter and all types of energy were concentrated into a dense state, and gravity—currently the weakest by far of the four known forces—is believed to have been as strong as the other fundamental forces, and all the forces may have been unified. The physics controlling this very early period is not understood, so we cannot say what, if anything, happened before time zero. Since the Planck epoch, the universe has been expanding to its present scale, with a very short but intense period of cosmic inflation speculated to have occurred within the first 10−32 seconds. This initial period of inflation would explain why space appears to be very flat.
Within the first fraction of a second of the universe's existence, the four fundamental forces had separated. As the universe continued to cool from its inconceivably hot state, various types of elementary particles associated stably into ever larger combinations, including stable protons and neutrons, which then formed more complex atomic nuclei through nuclear fusion.
This process, known as Big Bang nucleosynthesis, lasted for about 17 minutes and ended about 20 minutes after the Big Bang, so only the fastest and simplest reactions occurred. About 25% of the protons and all the neutrons in the universe, by mass, were converted to helium, with small amounts of deuterium and traces of lithium. Any other element was only formed in very tiny quantities. The other 75% of the protons remained unaffected, as hydrogen nuclei.
After nucleosynthesis ended, the universe entered a period known as the photon epoch. During this period, the universe was still far too hot for matter to form neutral atoms, so it contained a hot, dense, foggy plasma of negatively charged electrons, neutral neutrinos and positive nuclei. After about 377,000 years, the universe had cooled enough that electrons and nuclei could form the first stable atoms. This is known as recombination for historical reasons; electrons and nuclei were combining for the first time. Unlike plasma, neutral atoms are transparent to many wavelengths of light, so for the first time, the universe also became transparent. The photons released when these atoms formed can still be seen today; they form the cosmic microwave background.
As the universe expands, the energy density of electromagnetic radiation decreases more quickly than does that of matter because the energy of each photon decreases as it is cosmologically redshifted. At around 47,000 years, the energy density of matter became larger than that of photons and neutrinos, and began to dominate the large scale behavior of the universe. This marked the end of the radiation-dominated era and the start of the matter-dominated era.
In the earliest stages of the universe, tiny fluctuations within the universe's density led to concentrations of dark matter gradually forming. Ordinary matter, attracted to these by gravity, formed large gas clouds and eventually, stars and galaxies, where the dark matter was most dense, and voids where it was least dense. After around 100–300 million years, the first stars formed, known as Population III stars. These were probably very massive, luminous, non metallic and short-lived. They were responsible for the gradual reionization of the universe between about 200–500 million years and 1 billion years, and also for seeding the universe with elements heavier than helium, through stellar nucleosynthesis.
The universe also contains a mysterious energy—possibly a scalar field—called dark energy, the density of which does not change over time. After about 9.8 billion years, the universe had expanded sufficiently so that the density of matter was less than the density of dark energy, marking the beginning of the present dark-energy-dominated era. In this era, the expansion of the universe is accelerating due to dark energy.

Physical properties

Of the four fundamental interactions, gravitation is the dominant at astronomical length scales. Gravity's effects are cumulative; by contrast, the effects of positive and negative charges tend to cancel one another, making electromagnetism relatively insignificant on astronomical length scales. The remaining two interactions, the weak and strong nuclear forces, decline very rapidly with distance; their effects are confined mainly to sub-atomic length scales.
The universe appears to have much more matter than antimatter, an asymmetry possibly related to the CP violation. This imbalance between matter and antimatter is partially responsible for the existence of all matter existing today, since matter and antimatter, if equally produced at the Big Bang, would have completely annihilated each other and left only photons as a result of their interaction.