Tannin


Tannins are a class of astringent, polyphenolic biomolecules that bind to and precipitate proteins and various other organic compounds including amino acids and alkaloids. The term tannin is widely applied to any large polyphenolic compound containing sufficient hydroxyls and other suitable groups to form strong complexes with various macromolecules.
The term tannin refers to the abundance of these compounds in oak bark, which was used in tanning animal hides into leather.
The tannin compounds are widely distributed in many species of plants, where they play a role in protection from predation and might help in regulating plant growth. The astringency from the tannins is what causes the dry and puckery feeling in the mouth following the consumption of unripened fruit, red wine or tea. Likewise, the destruction or modification of tannins with time plays an important role when determining harvesting times.
Tannins have molecular weights ranging from 500 to over 3,000 and up to 20,000 daltons.

Structure and classes of tannins

There are three major classes of tannins: Shown below are the base unit or monomer of the tannin. Particularly in the flavone-derived tannins, the base shown must be heavily hydroxylated and polymerized in order to give the high molecular weight polyphenol motif that characterizes tannins. Typically, tannin molecules require at least 12 hydroxyl groups and at least five phenyl groups to function as protein binders.
Oligostilbenoids are oligomeric forms of stilbenoids and constitute a minor class of tannins.

Pseudo-tannins

Pseudo-tannins are low molecular weight compounds associated with other compounds. They do not change color during the Goldbeater's skin [|test], unlike hydrolysable and condensed tannins, and cannot be used as tanning compounds. Some examples of pseudo tannins and their sources are:
Pseudo tanninSource
Gallic acidRhubarb
Flavan-3-ols Tea, acacia, catechu, cocoa, guarana
Chlorogenic acidNux-vomica, coffee, mate
Ipecacuanhic acidCarapichea ipecacuanha

History

, gallic acid, and pyrogallic acid were first discovered by chemist Henri Braconnot in 1831. Julius Löwe was the first person to synthesize ellagic acid by heating gallic acid with arsenic acid or silver oxide.
Maximilian Nierenstein studied natural phenols and tannins found in different plant species. Working with Arthur George Perkin, he prepared ellagic acid from algarobilla and certain other fruits in 1905. He suggested its formation from galloyl-glycine by Penicillium in 1915. Tannase is an enzyme that Nierenstein used to produce m-digallic acid from gallotannins. He proved the presence of catechin in cocoa beans in 1931. He showed in 1945 that luteic acid, a molecule present in the myrobalanitannin, a tannin found in the fruit of Terminalia chebula, is an intermediary compound in the synthesis of ellagic acid.
At these times, molecule formulas were determined through combustion analysis. The discovery in 1943 by Martin and Synge of paper chromatography provided for the first time the means of surveying the phenolic constituents of plants and for their separation and identification. There was an explosion of activity in this field after 1945, including prominent work by Edgar Charles Bate-Smith and Tony Swain at Cambridge University.
In 1966, Edwin Haslam proposed a first comprehensive definition of plant polyphenols based on the earlier proposals of Bate-Smith, Swain and Theodore White, which includes specific structural characteristics common to all phenolics having a tanning property. It is referred to as the White–Bate-Smith–Swain–Haslam definition.

Occurrence

Tannins are distributed in species throughout the plant kingdom. They are commonly found in both gymnosperms and angiosperms. Mole studied the distribution of tannin in 180 families of dicotyledons and 44 families of monocotyledons. Most families of dicot contain tannin-free species. The best known families of which all species tested contain tannin are: Aceraceae, Actinidiaceae, Anacardiaceae, Bixaceae, Burseraceae, Combretaceae, Dipterocarpaceae, Ericaceae, Grossulariaceae, Myricaceae for dicot and Najadaceae and Typhaceae in Monocot. To the family of the oak, Fagaceae, 73% of the species tested contain tannin. For those of acacias, Mimosaceae, only 39% of the species tested contain tannin, among Solanaceae rate drops to 6% and 4% for the Asteraceae. Some families like the Boraginaceae, Cucurbitaceae, Papaveraceae contain no tannin-rich species.
The most abundant polyphenols are the condensed tannins, found in virtually all families of plants, and comprising up to 50% of the dry weight of leaves.

Cellular localization

In all vascular plants studied, tannins are manufactured by a chloroplast-derived organelle, the tannosome. Tannins are mainly physically located in the vacuoles or surface wax of plants. These storage sites keep tannins active against plant predators, but also keep some tannins from affecting plant metabolism while the plant tissue is alive.
Tannins are classified as ergastic substances, i.e., non-protoplasm materials found in cells. Tannins, by definition, precipitate proteins. In this condition, they must be stored in organelles able to withstand the protein precipitation process. Idioblasts are isolated plant cells which differ from neighboring tissues and contain non-living substances. They have various functions such as storage of reserves, excretory materials, pigments, and minerals. They could contain oil, latex, gum, resin or pigments etc. They also can contain tannins. In Japanese persimmon fruits, tannin is accumulated in the vacuole of tannin cells, which are idioblasts of parenchyma cells in the flesh.

Presence in soils

The convergent evolution of tannin-rich plant communities has occurred on nutrient-poor acidic soils throughout the world. Tannins were once believed to function as anti-herbivore defenses, but more and more ecologists now recognize them as important controllers of decomposition and nitrogen cycling processes. As concern grows about global warming, there is great interest to better understand the role of polyphenols as regulators of carbon cycling, in particular in northern boreal forests.
Leaf litter and other decaying parts of kauri, a tree species found in New Zealand, decompose much more slowly than those of most other species. Besides its acidity, the plant also bears substances such as waxes and phenols, most notably tannins, that are harmful to microorganisms.

Presence in water and wood

The leaching of highly water soluble tannins from decaying vegetation and leaves along a stream may produce what is known as a blackwater river. Water flowing out of bogs has a characteristic brown color from dissolved peat tannins. The presence of tannins in well water can make it smell bad or taste bitter, but this does not make it unsafe to drink.
Tannins leaching from an unprepared driftwood decoration in an aquarium can cause pH lowering and coloring of the water to a tea-like tinge. A way to avoid this is to boil the wood in water several times, discarding the water each time. Using peat as an aquarium substrate can have the same effect. Many hours of boiling the driftwood may need to be followed by many weeks or months of constant soaking and many water changes before the water will stay clear. Raising the water's pH level, e.g. by adding baking soda, will accelerate the process of leaching.
Tannins in water can lead to feather staining on wild and domestic waterfowl which frequent the water; mute swans, which are typically white in colour, can often be observed with reddish-brown staining as a result of coming into contact with dissolved tannins, though dissolved iron compounds also play a role.
Softwoods, while in general much lower in tannins than hardwoods, are usually not recommended for use in an aquarium so using a hardwood with a very light color, indicating a low tannin content, can be an easy way to avoid tannins. Tannic acid is brown in color, so in general white woods have a low tannin content. Woods with a lot of yellow, red, or brown coloration to them tend to contain a lot of tannin.

Extraction

There is no single protocol for extracting tannins from all plant material. The procedures used for tannins are widely variable. It may be that acetone in the extraction solvent increases the total yield by inhibiting interactions between tannins and proteins during extraction or even by breaking hydrogen bonds between tannin-protein complexes.

Tests for tannins

There are three groups of methods for the analysis of tannins: precipitation of proteins or alkaloids, reaction with phenolic rings, and depolymerization.

Alkaloid precipitation

Alkaloids such as caffeine, cinchonine, quinine or strychnine, precipitates polyphenols and tannins. This property can be used in a quantitation method.

Goldbeater's skin test

When goldbeater's skin or ox skin is dipped in HCl, rinsed in water, soaked in the tannin solution for 5 minutes, washed in water, and then treated with 1% FeSO4 solution, it gives a blue black color if tannin was present.

Ferric chloride test

The following describes the use of ferric chloride tests for phenolics in general: Powdered plant leaves of the test plant are weighed into a beaker and 10 ml of distilled water are added. The mixture is boiled for five minutes. Two drops of 5% FeCl3 are then added. Production of a greenish precipitate is an indication of the presence of tannins. Alternatively, a portion of the water extract is diluted with distilled water in a ratio of 1:4 and few drops of 10% ferric chloride solution is added. A blue or green color indicates the presence of tannins.