Subdivision (simplicial complex)
A subdivision of a simplicial complex is another simplicial complex in which, intuitively, one or more simplices of the original complex have been partitioned into smaller simplices. The most commonly used subdivision is the barycentric subdivision, but the term is more general. The subdivision is defined in slightly different ways in different contexts.
In geometric simplicial complexes
Let K be a geometric simplicial complex. A subdivision of K is a GSC L such that:- |K| = |L|, that is, the union of simplices in K equals the union of simplices in L.
- each simplex of L is contained in some simplex of K.
Subdivision by starring
One way to obtain a subdivision of K is to pick an arbitrary point x in |K|, remove each simplex s in K that contains x, and replace it with the closure of the following set of simplices:where is the join of the point x and the face t. This process is called starring at x.A stellar subdivision is a subdivision obtained by sequentially starring at different points.
A derived subdivision is a subdivision obtained by the following inductive process.
- Star each 1-dimensional simplex at some internal point;
- Star each 2-dimensional simplex at some internal point, over the subdivision of the 1-dimensional simplices;
- ... Star each k-dimensional simplex at some internal point, over the subdivision of the -dimensional simplices.
Iterated subdivisions can be used to attain arbitrarily fine triangulations of a given polyhedron.
In abstract simplicial complexes
Let K be an abstract simplicial complex. The face poset of K is a poset made of all nonempty simplices of K, ordered by inclusion. For example, the face-poset of the closure of is the poset with the following chains:- < <
- < <
- < <
- < <
- < <
- < <
The first barycentric subdivision of an ASC K is the order complex of its face poset.' The order complex of the above poset is the closure of the following simplices:
The geometric realization of the subdivision of K is always homeomorphic to the geometric realization of K.'
Category:Simplicial sets