Stellar evolution
Stellar evolution is the process by which a star changes over the course of time. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the current age of the universe. The table shows the lifetimes of stars as a function of their masses. All stars are formed from collapsing clouds of gas and dust, often called nebulae or molecular clouds. Over the course of millions of years, these protostars settle down into a state of equilibrium, becoming what is known as a main sequence star.
Nuclear fusion powers a star for most of its existence. Initially the energy is generated by the fusion of hydrogen atoms at the core of the main-sequence star. Later, as the preponderance of atoms at the core becomes helium, stars like the Sun begin to fuse hydrogen along a spherical shell surrounding the core. This process causes the star to gradually grow in size, passing through the subgiant stage until it reaches the red-giant phase. Stars with at least half the mass of the Sun can also begin to generate energy through the fusion of helium at their core, whereas more-massive stars can fuse heavier elements along a series of concentric shells. Once a star like the Sun has exhausted its nuclear fuel, its core collapses into a dense white dwarf and the outer layers are expelled as a planetary nebula. Stars with around ten or more times the mass of the Sun can explode in a supernova as their inert iron cores collapse into an extremely dense neutron star or black hole. Although the universe is not old enough for any of the smallest red dwarfs to have reached the end of their existence, stellar models suggest they will slowly become brighter and hotter before running out of hydrogen fuel and becoming low-mass white dwarfs.
Stellar evolution is not studied by observing the life of a single star, as most stellar changes occur too slowly to be detected, even over many centuries. Instead, astrophysicists come to understand how stars evolve by observing numerous stars at various points in their lifetime, and by simulating stellar structure using computer models.
Star formation
Protostar
Stellar evolution starts with the gravitational collapse of a giant molecular cloud. Typical giant molecular clouds are roughly across and contain up to. As it collapses, a giant molecular cloud breaks into smaller and smaller pieces. In each of these fragments, the collapsing gas releases gravitational potential energy as heat. As its temperature and pressure increase, a fragment condenses into a rotating ball of superhot gas known as a protostar. Filamentary structures are truly ubiquitous in the molecular cloud. Dense molecular filaments will fragment into gravitationally bound cores, which are the precursors of stars. Continuous accretion of gas, geometrical bending, and magnetic fields may control the detailed fragmentation manner of the filaments. In supercritical filaments, observations have revealed quasi-periodic chains of dense cores with spacing comparable to the filament inner width, and embedded two protostars with gas outflows.A protostar continues to grow by accretion of gas and dust from the molecular cloud, becoming a pre-main-sequence star as it reaches its final mass. Further development is determined by its mass. Mass is typically compared to the mass of the Sun: means 1 solar mass.
Protostars are encompassed in dust, and are thus more readily visible at infrared wavelengths.
Observations from the Wide-field Infrared Survey Explorer have been especially important for unveiling numerous galactic protostars and their parent star clusters.
Brown dwarfs and sub-stellar objects
Protostars with masses less than roughly never reach temperatures high enough for nuclear fusion of hydrogen to begin. These are known as brown dwarfs. The International Astronomical Union defines brown dwarfs as stars massive enough to fuse deuterium at some point in their lives. Objects smaller than are classified as sub-brown dwarfs. Both types, deuterium-burning and not, shine dimly and fade away slowly, cooling gradually over hundreds of millions of years.Main sequence stellar mass objects
For a more-massive protostar, the core temperature will eventually reach 10 million kelvin, initiating the proton–proton chain reaction and allowing hydrogen to fuse, first to deuterium and then to helium. In stars of slightly over, the carbon–nitrogen–oxygen fusion reaction contributes a large portion of the energy generation. The onset of nuclear fusion leads relatively quickly to a hydrostatic equilibrium in which energy released by the core maintains a high gas pressure, balancing the weight of the star's matter and preventing further gravitational collapse. The star thus evolves rapidly to a stable state, beginning the main-sequence phase of its evolution.A new star will sit at a specific point on the main sequence of the Hertzsprung–Russell diagram, with the main-sequence spectral type depending upon the mass of the star. Small, relatively cold, low-mass red dwarfs fuse hydrogen slowly and will remain on the main sequence for hundreds of billions of years or longer, whereas massive, hot O-type stars will leave the main sequence after just a few million years. A mid-sized yellow dwarf star, like the Sun, will remain on the main sequence for about 10 billion years. The Sun is thought to be in the middle of its main sequence lifespan.
Planetary system
A star may gain a protoplanetary disk, which furthermore can develop into a planetary system.Mature stars
Eventually the star's core exhausts its supply of hydrogen and the star begins to evolve off the main sequence. Without the outward radiation pressure generated by the fusion of hydrogen to counteract the force of gravity, the core contracts until either electron degeneracy pressure becomes sufficient to oppose gravity or the core becomes hot enough for helium fusion to begin. Which of these happens first depends upon the star's mass.Low-mass stars
What happens after a low-mass star ceases to produce energy through fusion has not been directly observed; the universe is around 13.8 billion years old, which is less time than it takes for fusion to cease in such stars.Recent astrophysical models suggest that red dwarfs of may stay on the main sequence for some six to twelve trillion years, gradually increasing in both temperature and luminosity, and take several hundred billion years more to collapse, slowly, into a white dwarf. Such stars will not become red giants as the whole star is a convection zone and it will not develop a degenerate helium core with a shell burning hydrogen. Instead, hydrogen fusion will proceed until almost the whole star is helium.
Slightly more massive stars do expand into red giants, but their helium cores are not massive enough to reach the temperatures required for helium fusion so they never reach the tip of the red-giant branch. When hydrogen shell burning finishes, these stars move directly off the red-giant branch like a post-asymptotic-giant-branch star, but at lower luminosity, to become a white dwarf. A star with an initial mass about will be able to reach temperatures high enough to fuse helium, and these "mid-sized" stars go on to further stages of evolution beyond the red-giant branch.
Mid-sized stars
Stars of roughly become red giants, which are large non-main-sequence stars of stellar classification K or M. Red giants lie along the right edge of the Hertzsprung–Russell diagram due to their red color and large luminosity. Examples include Aldebaran in the constellation Taurus and Arcturus in the constellation of Boötes.Mid-sized stars are red giants during two different phases of their post-main-sequence evolution: red-giant-branch stars, with inert cores made of helium and hydrogen-burning shells, and asymptotic-giant-branch stars, with inert cores made of carbon and helium-burning shells inside the hydrogen-burning shells. Between these two phases, stars spend a period on the horizontal branch with a helium-fusing core. Many of these helium-fusing stars cluster towards the cool end of the horizontal branch as K-type giants and are referred to as red clump giants.
Subgiant phase
When a star exhausts the hydrogen in its core, it leaves the main sequence and begins to fuse hydrogen in a shell outside the core. The core increases in mass as the shell produces more helium. Depending on the mass of the helium core, this continues for several million to one or two billion years, with the star expanding and cooling at a similar or slightly lower luminosity to its main sequence state. Eventually either the core becomes degenerate, in stars around the mass of the sun, or the outer layers cool sufficiently to become opaque, in more massive stars. Either of these changes cause the hydrogen shell to increase in temperature and the luminosity of the star to increase, at which point the star expands onto the red-giant branch.Red-giant-branch phase
The expanding outer layers of the star are convective, with the material being mixed by turbulence from near the fusing regions up to the surface of the star. For all but the lowest-mass stars, the fused material has remained deep in the stellar interior prior to this point, so the convecting envelope makes fusion products visible at the star's surface for the first time. At this stage of evolution, the results are subtle, with the largest effects, alterations to the isotopes of hydrogen and helium, being unobservable. The effects of the CNO cycle appear at the surface during the first dredge-up, with lower 12C/13C ratios and altered proportions of carbon and nitrogen. These are detectable with spectroscopy and have been measured for many evolved stars.The helium core continues to grow on the red-giant branch. It is no longer in thermal equilibrium, either degenerate or above the Schönberg–Chandrasekhar limit, so it increases in temperature which causes the rate of fusion in the hydrogen shell to increase. The star increases in luminosity towards the tip of the red-giant branch. Red-giant-branch stars with a degenerate helium core all reach the tip with very similar core masses and very similar luminosities, although the more massive of the red giants become hot enough to ignite helium fusion before that point.