Sporadic group
In the mathematical classification of finite simple groups, there are a number of groups which do not fit into any infinite family. These are called the sporadic simple groups, or the sporadic finite groups, or just the sporadic groups.
A simple group is a group G that does not have any normal subgroups except for the trivial group and G itself. The mentioned classification theorem states that the list of finite simple groups consists of 18 countably infinite families plus 26 exceptions that do not follow such a systematic pattern. These 26 exceptions are the sporadic groups. The Tits group is sometimes regarded as a sporadic group because it is not strictly a group of Lie type, in which case there would be 27 sporadic groups.
The monster group, or friendly giant, is the largest of the sporadic groups, and all but six of the other sporadic groups are subquotients of it.
Names
Five of the sporadic groups were discovered by Émile Mathieu in the 1860s and the other twenty-one were found between 1965 and 1975. Several of these groups were predicted to exist before they were constructed. Most of the groups are named after the mathematician who first predicted their existence. The full list is:File:MonsterSporadicGroupGraph.svg|thumb|335px|The diagram shows the subquotient relations between the 26 sporadic groups. A connecting line means the lower group is subquotient of the upper – and no sporadic subquotient in between.
The generations of Robert Griess: 1st, 2nd, 3rd, Pariah
- Mathieu groups M11, M12, M22, M23, M24
- Janko groups J1, J2 or HJ, J3 or HJM, J4
- Conway groups Co1, Co2, Co3
- Fischer groups Fi22, Fi23, Fi24′ or F3+
- Higman-Sims group HS
- McLaughlin group McL
- Held group He or F7+ or F7
- Rudvalis group Ru
- Suzuki group Suz or F3−
- O'Nan group O'N
- Harada-Norton group HN or F5+ or F5
- Lyons group Ly
- Thompson group Th or F3|3 or F3
- Baby Monster group B or F2+ or F2
- Fischer-Griess Monster group M or F1
A further exception in the classification of finite simple groups is the Tits group, which is sometimes considered of Lie type or sporadic — it is almost but not strictly a group of Lie type — which is why in some sources the number of sporadic groups is given as 27, instead of 26. In some other sources, the Tits group is regarded as neither sporadic nor of Lie type, or both. The Tits group is the of the infinite family of commutator groups ; thus in a strict sense not sporadic, nor of Lie type. For these finite simple groups coincide with the groups of Lie type also known as Ree groups of type 2F4.
The earliest use of the term sporadic group may be where he comments about the Mathieu groups: "These apparently sporadic simple groups would probably repay a closer examination than they have yet received."
The diagram is based on. It does not show the numerous non-sporadic simple subquotients of the sporadic groups.
Organization
Happy Family
Of the 26 sporadic groups, 20 can be seen inside the monster group as subgroups or quotients of subgroups.These twenty have been called the happy family by Robert Griess, and can be organized into three generations.
First generation (5 groups): the Mathieu groups
Mn for n = 11, 12, 22, 23 and 24 are multiply transitive permutation groups on n points. They are all subgroups of M24, which is a permutation group on 24 points.Second generation (7 groups): the Leech lattice
All the subquotients of the automorphism group of a lattice in 24 dimensions called the Leech lattice:- Co1 is the quotient of the automorphism group by its center
- Co2 is the stabilizer of a type 2 vector
- Co3 is the stabilizer of a type 3 vector
- Suz is the group of automorphisms preserving a complex structure
- McL is the stabilizer of a type 2-2-3 triangle
- HS is the stabilizer of a type 2-3-3 triangle
- J2 is the group of automorphisms preserving a quaternionic structure.
Third generation (8 groups): other subgroups of the Monster
- B or F2 has a double cover which is the centralizer of an element of order 2 in M
- Fi24′ has a triple cover which is the centralizer of an element of order 3 in M
- Fi23 is a subgroup of Fi24′
- Fi22 has a double cover which is a subgroup of Fi23
- The product of Th = F3 and a group of order 3 is the centralizer of an element of order 3 in M
- The product of HN = F5 and a group of order 5 is the centralizer of an element of order 5 in M
- The product of He = F7 and a group of order 7 is the centralizer of an element of order 7 in M.
- Finally, the Monster group itself is considered to be in this generation.
Pariahs
The six exceptions are J1, J3, J4, O'N, Ru, and Ly, sometimes known as the pariahs.Table of the sporadic group orders (with Tits group)
| Group | Discoverer | Year | Order | Degree of minimal faithful Brauer character | Semi-presentation | ||
| M or F1 | Fischer, Griess | 1973 | 808,017,424,794,512,875,886,459,904,961,710, = 246·320·59·76·112·133·17·19·23·29·31 | 196883 | 2A, 3B, 29 | ||
| B or F2 | Fischer | 1973 | 4,154,781,481,226,426,191,177,580,544,000,000 = 241·313·56·72·11·13·17·19·23·31·47 ≈ 4 | 4371 | 2C, 3A, 55 | ||
| Fi24 or F3+ | Fischer | 1971 | 1,255,205,709,190,661,721,292,800 = 221·316·52·73·11·13·17·23·29 ≈ 1 | 8671 | 2A, 3E, 29 | ||
| Fi23 | Fischer | 1971 | 4,089,470,473,293,004,800 = 218·313·52·7·11·13·17·23 ≈ 4 | 782 | 2B, 3D, 28 | ||
| Fi22 | Fischer | 1971 | 64,561,751,654,400 = 217·39·52·7·11·13 ≈ 6 | 78 | 2A, 13, 11 | ||
| Th or F3 | Thompson | 1976 | 90,745,943,887,872,000 = 215·310·53·72·13·19·31 ≈ 9 | 248 | 2, 3A, 19 | ||
| Ly | Lyons | 1972 | 51,765,179,004,000,000 = 28·37·56·7·11·31·37·67 ≈ 5 | 2480 | 2, 5A, 14 | ||
| HN or F5 | Harada, Norton | 1976 | 273,030,912,000,000 = 214·36·56·7·11·19 ≈ 3 | 133 | 2A, 3B, 22 | ||
| Co1 | Conway | 1969 | 4,157,776,806,543,360,000 = 221·39·54·72·11·13·23 ≈ 4 | 276 | 2B, 3C, 40 | ||
| Co2 | Conway | 1969 | 42,305,421,312,000 = 218·36·53·7·11·23 ≈ 4 | 23 | 2A, 5A, 28 | ||
| Co3 | Conway | 1969 | 495,766,656,000 = 210·37·53·7·11·23 ≈ 5 | 23 | 2A, 7C, 17 | ||
| ON or O'N | O'Nan | 1976 | 460,815,505,920 = 29·34·5·73·11·19·31 ≈ 5 | 10944 | 2A, 4A, 11 | ||
| Suz | Suzuki | 1969 | 448,345,497,600 = 213·37·52·7·11·13 ≈ 4 | 143 | 2B, 3B, 13 | ||
| Ru | Rudvalis | 1972 | 145,926,144,000 = 214·33·53·7·13·29 ≈ 1 | 378 | 2B, 4A, 13 | ||
| He or F7 | Held | 1969 | 4,030,387,200 = 210·33·52·73·17 ≈ 4 | 51 | 2A, 7C, 17 | ||
| McL | McLaughlin | 1969 | 898,128,000 = 27·36·53·7·11 ≈ 9 | 22 | 2A, 5A, 11 | ||
| HS | Higman, Sims | 1967 | 44,352,000 = 29·32·53·7·11 ≈ 4 | 22 | 2A, 5A, 11 | ||
| J4 | Janko | 1976 | 86,775,571,046,077,562,880 = 221·33·5·7·113·23·29·31·37·43 ≈ 9 | 1333 | 2A, 4A, 37 | ||
| J3 or HJM | Janko | 1968 | 50,232,960 = 27·35·5·17·19 ≈ 5 | 85 | 2A, 3A, 19 | ||
| J2 or HJ | Janko | 1968 | 604,800 = 27·33·52·7 ≈ 6 | 14 | 2B, 3B, 7 | ||
| J1 | Janko | 1965 | 175,560 = 23·3·5·7·11·19 ≈ 2 | 56 | 2, 3, 7 | ||
| M24 | Mathieu | 1861 | 244,823,040 = 210·33·5·7·11·23 ≈ 2 | 23 | 2B, 3A, 23 | ||
| M23 | Mathieu | 1861 | 10,200,960 = 27·32·5·7·11·23 ≈ 1 | 22 | 2, 4, 23 | ||
| M22 | Mathieu | 1861 | 443,520 = 27·32·5·7·11 ≈ 4 | 21 | 2A, 4A, 11 | ||
| M12 | Mathieu | 1861 | 95,040 = 26·33·5·11 ≈ 1 | 11 | 2B, 3B, 11 | ||
| M11 | Mathieu | 1861 | 7,920 = 24·32·5·11 ≈ 8 | 10 | 2, 4, 11 | ||
| T or Ree group#Ree groups of type 2F4| | Tits | 1964 | 17,971,200 = 211·33·52·13 ≈ 2 | 104 | 2A, 3, 13 |