Spinning mule
The spinning mule is a machine used to spin cotton and other fibres. They were used extensively from the late 18th to the early 20th century in the mills of Lancashire and elsewhere. Mules were worked in pairs by a minder, with the help of two boys: the little piecer and the big or side piecer. The carriage carried up to 1,320 spindles and could be long, and would move forward and back a distance of four times a minute.
It was invented between 1775 and 1779 by Samuel Crompton. The self-acting mule was patented by Richard Roberts in 1825. At its peak, there were 5,000,000 mule spindles in Lancashire alone. Modern versions are still in production and are used to spin woollen yarns from noble fibres such as cashmere, ultra-fine merino and alpaca for the knitted textile market.
The spinning mule spins textile fibres into yarn by an intermittent process. In the draw stroke, the roving is pulled through rollers and twisted; on the return it is wrapped onto the spindle. Its rival, the throstle frame or ring frame, uses a continuous process, where the roving is drawn, twisted and wrapped in one action. The mule was the most common spinning machine from 1790 until about 1900 and was still used for fine yarns until the early 1980s. In 1890, a typical cotton mill would have over 60 mules, each with 1,320 spindles, which would operate four times a minute for 56 hours a week.
History
Before the 1770s, textile production was a cottage industry using flax and wool. Weaving was a family activity. The children and women would card the fibre – break up and clean the disorganised fluff into long bundles. The women would then spin these rough rovings into yarn wound onto a spindle. The male weaver would use a frame loom to weave this into cloth. This was then tentered in the sun to bleach it. The invention by John Kay of the flying shuttle made the loom twice as productive, causing the demand for cotton yarn to vastly exceed what traditional spinners could supply.There were two types of spinning wheel: the simple wheel, which uses an intermittent process, and the more refined Saxony wheel, which drives a differential spindle and flyer with a heck in a continuous process. These two wheels became the starting point of technological development. Businessmen such as Richard Arkwright employed inventors to find solutions that would increase the amount of yarn spun, then took out the relevant patents.
The spinning jenny allowed a group of eight spindles to be operated together. It mirrored the simple wheel; the rovings were clamped, and a frame moved forward stretching and thinning the roving. A wheel was rapidly turned as the frame was pushed back, and the spindles rotated, twisting the rovings into yarn and collecting it on the spindles. The spinning jenny was effective and could be operated by hand, but it produced weaker thread that could be used only for the weft part of the cloth.
The throstle and the later water frame pulled the rovings through a set of attenuating rollers. Spinning at differing speeds, these pulled the thread continuously while other parts twisted it as it wound onto the heavy spindles. This produced thread suitable for warp, but the multiple rollers required much more energy input and demanded that the device be driven by a water wheel. The early water frame, however, had only a single spindle. Combining ideas from these two system inspired the spinning mule.
The increased supply of muslin inspired developments in loom design such as Edmund Cartwright's power loom. Some spinners and handloom weavers opposed the perceived threat to their livelihood: there were frame-breaking riots and, in 1811–13, the Luddite riots. The preparatory and associated tasks allowed many children to be employed until this was regulated.
Development over the next century and a half led to an automatic mule and to finer and stronger yarn. The ring frame, originating in New England in the 1820s, was little used in Lancashire until the 1890s. It required more energy and could not produce the finest counts.
The first mule
invented the spinning mule in 1779, so called because it is a hybrid of Arkwright's water frame and James Hargreaves's spinning jenny in the same way that a mule is the product of crossbreeding a female horse with a male donkey. The spinning mule has a fixed frame with a creel of cylindrical bobbins to hold the roving, connected through the headstock to a parallel carriage with the spindles. On the outward motion, the rovings are paid out through attenuating rollers and twisted. On the return, the roving is clamped and the spindles are reversed to take up the newly spun thread.Crompton built his mule from wood. Although he used Hargreaves' ideas of spinning multiple threads and of attenuating the roving with rollers, it was he who put the spindles on the carriage and fixed a creel of roving bobbins on the frame. Both the rollers and the outward motion of the carriage remove irregularities from the rove before it is wound on the spindle. When Arkwright's patents expired, the mule was developed by several manufacturers.
Crompton's first mule had 48 spindles and could produce of 60s thread a day. This demanded a spindle speed of 1,700 rpm, and a power input of.
The mule produced strong, thin yarn, suitable for any kind of textile, warp or weft. It was first used to spin cotton, then other fibres.
Samuel Crompton could not afford to patent his invention. He sold the rights to David Dale and returned to weaving. Dale patented the mule and profited from it.
Improvements
Crompton's machine was largely built of wood, using bands and pulleys for the driving motions. After his machine was public, he had little to do with its development. Henry Stones, a mechanic from Horwich, constructed a mule using toothed gearing and, importantly, metal rollers. Baker of Bury worked on drums, and Hargreaves used parallel scrolling to achieve smoother acceleration and deceleration.In 1790, William Kelly of Glasgow used a new method to assist the draw stroke. First animals, and then water, was used as the prime mover. Wright of Manchester moved the headstock to the centre of the machine, allowing twice as many spindles; a squaring band was added to ensure the spindles came out in a straight line. He was in conversation with John Kennedy about the possibility of a self-acting mule. Kennedy, a partner in McConnell & Kennedy machine makers in Ancoats, was concerned with building ever larger mules. McConnell & Kennedy ventured into spinning when they were left with two unpaid-for mules; their firm prospered and eventually merged into the Fine Spinners & Doublers Association. In 1793, John Kennedy addressed the problem of fine counts. With these counts, the spindles on the return traverse needed to rotate faster than on the outward traverse. He attached gears and a clutch to implement this motion.
William Eaton, in 1818, improved the winding of the thread by using two faller wires and performing a backing off at the end of the outward traverse. All these mules had been worked by the strength of the operatives. The next improvement was a fully automatic mule.
Roberts' self-acting mule
took out his first patent in 1825 and a second in 1830. The task he had set himself was to design a self-actor, a self-acting or automatic spinning mule. Roberts is also known for the Roberts Loom, which was widely adopted because of its reliability. The mule in 1820 still needed manual assistance to spin a consistent thread; a self-acting mule would need:- A reversing mechanism that would unwind a spiral of yarn on the top of each spindle, before commencing the winding of a new stretch
- A faller wire that would ensure the yarn was wound into a predefined form such as a cop
- An appliance to vary the speed of revolution of the spindle, in accordance with the diameter of thread on that spindle
With the invention of the self actor, the hand-operated mule was increasingly referred to as a mule-jenny.