Straightedge and compass construction
In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an idealized ruler and a compass.
The idealized ruler, known as a straightedge, is assumed to be infinite in length, have only one edge, and no markings on it. The compass is assumed to have no maximum or minimum radius, and is assumed to "collapse" when lifted from the page, so it may not be directly used to transfer distances. More formally, the only permissible constructions are those granted by the first three postulates of Euclid's Elements.
It turns out to be the case that every point constructible using straightedge and compass may also be constructed using compass alone, or by straightedge alone if given a single circle and its center.
Ancient Greek mathematicians first conceived straightedge-and-compass constructions, and a number of ancient problems in plane geometry impose this restriction. The ancient Greeks developed many constructions, but in some cases were unable to do so. Gauss showed that some polygons are constructible but that most are not. Some of the most famous straightedge-and-compass problems were proved impossible by Pierre Wantzel in 1837 using field theory, namely trisecting an arbitrary angle and doubling the volume of a cube. Many of these problems are easily solvable provided that other geometric transformations are allowed; for example, neusis construction can be used to solve the former two problems.
In terms of algebra, a length is constructible if and only if it represents a constructible number, and an angle is constructible if and only if its cosine is a constructible number. A number is constructible if and only if it can be written using the four basic arithmetic operations and the extraction of square roots but of no higher-order roots.
Straightedge and compass tools
The "straightedge" and "compass" of straightedge-and-compass constructions are idealized versions of real-world rulers and compasses.- The straightedge is an infinitely long edge with no markings on it. It can only be used to draw a line segment between two points or to extend an existing line segment.
- The compass can have an arbitrarily large radius with no markings on it. Circles and circular arcs can be drawn starting from two given points: the centre and a point on the circle. The compass may or may not collapse.
- Lines and circles constructed have infinite precision and zero width.
Each construction must be mathematically exact. "Eyeballing" distances or using markings on a ruler are not permitted. Each construction must also terminate. That is, it must have a finite number of steps and not be the limit of ever closer approximations.
Stated this way, straightedge-and-compass constructions appear to be a parlour game, rather than a serious practical problem; but the purpose of the restriction is to ensure that constructions can be proven to be exactly correct.
History
The ancient Greek mathematicians first attempted straightedge-and-compass constructions, and they discovered how to construct sums, differences, products, ratios, and square roots of given lengths. They could also construct half of a given angle, a square whose area is twice that of another square, a square having the same area as a given polygon, and regular polygons of 3, 4, or 5 sides. But they could not construct one third of a given angle except in particular cases, or a square with the same area as a given circle, or regular polygons with other numbers of sides. Nor could they construct the side of a cube whose volume is twice the volume of a cube with a given side.Hippocrates and Menaechmus showed that the volume of the cube could be doubled by finding the intersections of hyperbolas and parabolas, but these cannot be constructed by straightedge and compass. In the fifth century BCE, Hippias used a curve that he called a quadratrix to both trisect the general angle and square the circle, and Nicomedes in the second century BCE showed how to use a conchoid to trisect an arbitrary angle; but these methods also cannot be followed with just straightedge and compass.
No progress on the unsolved problems was made for two millennia, until in 1796 Gauss showed that a regular polygon with 17 sides could be constructed; five years later he showed the sufficient criterion for a regular polygon of n sides to be constructible.
In 1837 Pierre Wantzel published a proof of the impossibility of trisecting an arbitrary angle or of doubling the volume of a cube, based on the impossibility of constructing cube roots of lengths. He also showed that Gauss's sufficient constructibility condition for regular polygons is also necessary.
Then in 1882 Lindemann showed that is a transcendental number, and thus that it is impossible by straightedge and compass to construct a square with the same area as a given circle.
The basic constructions
All straightedge-and-compass constructions consist of repeated application of five basic constructions using the points, lines and circles that have already been constructed. These are:- Creating the line through two points
- Creating the circle that contains one point and has a center at another point
- Creating the point at the intersection of two lines
- Creating the one point or two points in the intersection of a line and a circle
- Creating the one point or two points in the intersection of two circles.
Therefore, in any geometric problem we have an initial set of symbols, an algorithm, and some results. From this perspective, geometry is equivalent to an axiomatic algebra, replacing its elements by symbols. Probably Gauss first realized this, and used it to prove the impossibility of some constructions; only much later did Hilbert find a complete set of axioms for geometry.
Common straightedge-and-compass constructions
The most-used straightedge-and-compass constructions include:- Constructing the perpendicular bisector from a segment
- Finding the midpoint of a segment.
- Drawing a perpendicular line from a point to a line.
- Bisecting an angle
- Mirroring a point in a line
- Constructing a line through a point tangent to a circle
- Constructing a circle through 3 noncollinear points
- Drawing a line through a given point parallel to a given line.
Constructible points
Using the equations for lines and circles, one can show that the points at which they intersect lie in a quadratic extension of the smallest field F containing two points on the line, the center of the circle, and the radius of the circle. That is, they are of the form, where x, y, and k are in F.
Since the field of constructible points is closed under square roots, it contains all points that can be obtained by a finite sequence of quadratic extensions of the field of complex numbers with rational coefficients. By the above paragraph, one can show that any constructible point can be obtained by such a sequence of extensions. As a corollary of this, one finds that the degree of the minimal polynomial for a constructible point is a power of 2. In particular, any constructible point is an algebraic number, though not every algebraic number is constructible; for example, is algebraic but not constructible.
Constructible angles
There is a bijection between the angles that are constructible and the points that are constructible on any constructible circle. The angles that are constructible form an abelian group under addition modulo 2π. The angles that are constructible are exactly those whose tangent is constructible as a number. For example, the regular heptadecagon is constructible becauseas discovered by Gauss.
The group of constructible angles is closed under the operation that halves angles. The only angles of finite order that may be constructed starting with two points are those whose order is either a power of two, or a product of a power of two and a set of distinct Fermat primes. In addition there is a dense set of constructible angles of infinite order.
Relation to complex arithmetic
Given a set of points in the Euclidean plane, selecting any one of them to be called 0 and another to be called 1, together with an arbitrary choice of orientation allows us to consider the points as a set of complex numbers.Given any such interpretation of a set of points as complex numbers, the points constructible using valid straightedge-and-compass constructions alone are precisely the elements of the smallest field containing the original set of points and closed under the complex conjugate and square root operations. The elements of this field are precisely those that may be expressed as a formula in the original points using only the operations of addition, subtraction, multiplication, division, complex conjugate, and square root, which is easily seen to be a countable dense subset of the plane. Each of these six operations corresponding to a simple straightedge-and-compass construction. From such a formula it is straightforward to produce a construction of the corresponding point by combining the constructions for each of the arithmetic operations. More efficient constructions of a particular set of points correspond to shortcuts in such calculations.
Equivalently we can say that, given an arbitrary choice of orientation, a set of points determines a set of complex ratios given by the ratios of the differences between any two pairs of points. The set of ratios constructible using straightedge and compass from such a set of ratios is precisely the smallest field containing the original ratios and closed under taking complex conjugates and square roots.
For example, the real part, imaginary part and modulus of a point or ratio z are constructible as these may be expressed as
Doubling the cube and trisection of an angle is a rational number with denominator not divisible by 3) require ratios which are the solution to cubic equations, while squaring the circle requires a transcendental ratio. None of these are in the fields described, hence no straightedge-and-compass construction for these exists.