Solid-propellant rocket
A solid-propellant rocket or solid rocket is a rocket with a rocket engine that uses solid propellants. The earliest rockets were solid-fuel rockets powered by gunpowder. The inception of gunpowder rockets in warfare can be credited to the ancient Chinese, and in the 13th century, the Mongols played a pivotal role in facilitating their westward adoption.
All rockets used some form of solid or powdered propellant until the 20th century, when liquid-propellant rockets offered more efficient and controllable alternatives. Because of their simplicity and reliability, solid rockets are still used today in military armaments worldwide, model rockets, solid rocket boosters and on larger applications.
Since solid-fuel rockets can remain in storage for an extended period without much propellant degradation, and since they almost always launch reliably, they have been frequently used in military applications such as missiles. The lower performance of solid propellants does not favor their use as primary propulsion in modern medium-to-large launch vehicles customarily used for commercial satellites and major space probes. Solids are, however, frequently used as strap-on boosters to increase payload capacity or as spin-stabilized add-on upper stages when higher-than-normal velocities are required. Solid rockets are used as light launch vehicles for low Earth orbit payloads under 2 tons or escape payloads up to.
Basic concepts
A simple solid rocket motor consists of a casing, nozzle, grain, and igniter.The solid grain mass burns in a predictable fashion to produce exhaust gases, the flow of which is described by Taylor–Culick flow. The nozzle dimensions are calculated to maintain a design chamber pressure, while producing thrust from the exhaust gases.
Once ignited, a simple solid rocket motor cannot be shut off, as it contains all the ingredients necessary for combustion within the chamber in which they are burned. More advanced solid rocket motors can be throttled, or extinguished and re-ignited, by control of the nozzle geometry or through the use of vent ports. Further, pulsed rocket motors that burn in segments, and that can be ignited upon command are available.
Modern designs may also include a steerable nozzle for guidance, avionics, recovery hardware, self-destruct mechanisms, APUs, controllable tactical motors, controllable divert and attitude control motors, and thermal management materials.
History
The medieval Song dynasty Chinese invented the solid-propellant rocket. Illustrations and descriptions in the 14th century Chinese military treatise Huolongjing by the Ming dynasty military writer and philosopher Jiao Yu confirm that the Chinese in 1232 used solid propellant rockets then known as "fire arrows" to drive back the Mongols during the Siege of Kaifeng. Each arrow took the form of a simple, solid-propellant rocket tube that was filled with gunpowder. One open end allowed the gas to escape and was attached to a long stick that acted as a guidance system for flight direction control.The first rockets with tubes of cast iron were used by the Kingdom of Mysore under Hyder Ali and Tipu Sultan in the 1750s. These rockets had a reach of targets up to a mile and a half away. These were extremely effective in the Second Anglo-Mysore War that ended in a humiliating defeat for the British East India Company. Word of the success of the Mysore rockets against the British triggered research in England, France, Ireland and elsewhere. When the British finally conquered the fort of Srirangapatana in 1799, hundreds of rockets were shipped off to the Royal Arsenal near London to be reverse-engineered. This led to the first industrial manufacture of military rockets with the Congreve rocket in 1804.
In 1921 the Soviet research and development laboratory Gas Dynamics Laboratory began developing solid-propellant rockets, which resulted in the first launch in 1928, that flew for approximately 1,300 metres. These rockets were used in 1931 for the world's first successful use of rockets to assist take-off of aircraft. The research continued from 1933 by the Reactive Scientific Research Institute with the development of the RS-82 and RS-132 rockets, including designing several variations for ground-to-air, ground-to-ground, air-to-ground and air-to-air combat. The earliest known use by the Soviet Air Force of aircraft-launched unguided anti-aircraft rockets in combat against heavier-than-air aircraft took place in August 1939, during the Battle of Khalkhin Gol. In June 1938, the RNII began developing a multiple rocket launcher based on the RS-132 rocket. In August 1939, the completed product was the BM-13 / Katyusha rocket launcher. Towards the end of 1938 the first significant large scale testing of the rocket launchers took place, 233 rockets of various types were used. A salvo of rockets could completely straddle a target at a range of. By the end of World War II total production of rocket launchers reached about 10,000. with 12 million rockets of the RS type produced for the Soviet armed forces.
In the United States modern castable composite solid rocket motors were invented by the American aerospace engineer Jack Parsons at Caltech in 1942 when he replaced double base propellant with roofing asphalt and potassium perchlorate. This made possible slow-burning rocket motors of adequate size and with sufficient shelf-life for jet-assisted take off applications. Charles Bartley, employed at JPL, substituted curable synthetic rubber for the gooey asphalt, creating a flexible but geometrically stable load-bearing propellant grain that bonded securely to the motor casing. This made possible much larger solid rocket motors. Atlantic Research Corporation significantly boosted composite propellant Isp in 1954 by increasing the amount of powdered aluminium in the propellant to as much as 20%.
Solid-propellant rocket technology got its largest boost in technical innovation, size and capability with the various mid-20th century government initiatives to develop increasingly capable military missiles. After initial designs of ballistic missile military technology designed with liquid-propellant rockets in the 1940s and 1950s, both the Soviet Union and the United States embarked on major initiatives to develop solid-propellant local, regional, and intercontinental ballistic missiles, including solid-propellant missiles that could be launched from air or sea. Many other governments also developed these military technologies over the next 50 years.
By the later 1980s and continuing to 2020, these government-developed highly-capable solid rocket technologies have been applied to orbital spaceflight by many government-directed programs, most often as booster rockets to add extra thrust during the early ascent of their primarily liquid rocket launch vehicles. Some designs have had solid rocket upper stages as well. Examples flying in the 2010s include the European Ariane 5, US Atlas V and Space Shuttle, and Japan's H-II.
The largest solid rocket motors ever built were Aerojet's three monolithic solid motors cast in Florida. Motors 260 SL-1 and SL-2 were in diameter, long, weighed, and had a maximum thrust of. Burn duration was two minutes. The nozzle throat was large enough to walk through standing up. The motor was capable of serving as a 1-to-1 replacement for the 8-engine Saturn I liquid-propellant first stage but was never used as such. Motor 260 SL-3 was of similar length and weight but had a maximum thrust of and a shorter duration.
Design
Design begins with the total impulse required, which determines the fuel and oxidizer mass. Grain geometry and chemistry are then chosen to satisfy the required motor characteristics.The following are chosen or solved simultaneously. The results are exact dimensions for grain, nozzle, and case geometries:
- The grain burns at a predictable rate, given its surface area and chamber pressure.
- The chamber pressure is determined by the nozzle throat diameter and grain burn rate.
- Allowable chamber pressure is a function of casing design.
- The length of burn time is determined by the grain "web thickness".
Common modes of failure in solid rocket motors include fracture of the grain, failure of case bonding, and air pockets in the grain. All of these produce an instantaneous increase in burn surface area and a corresponding increase in exhaust gas production rate and pressure, which may rupture the casing.
Another failure mode is casing seal failure. Seals are required in casings that have to be opened to load the grain. Once a seal fails, hot gas will erode the escape path and result in failure. This was the cause of the Space Shuttle Challenger disaster.
Grain geometry
Solid rocket fuel deflagrates from the surface of exposed propellant in the combustion chamber. In this fashion, the geometry of the propellant inside the rocket motor plays an important role in the overall motor performance. As the surface of the propellant burns, the shape evolves, most often changing the propellant surface area exposed to the combustion gases. Since the propellant volume is equal to the cross sectional area times the fuel length, the volumetric propellant consumption rate is the cross section area times the linear burn rate, and the instantaneous mass flow rate of combustion gases generated is equal to the volumetric rate times the fuel density :Several geometric configurations are often used depending on the application and desired thrust curve:
- Circular bore: if in BATES configuration, produces progressive-regressive thrust curve.
- End burner: propellant burns from one axial end to other producing steady long burn, though has thermal difficulties, center of gravity shift.
- C-slot: propellant with large wedge cut out of side, producing fairly long regressive thrust, though has thermal difficulties and asymmetric CG characteristics.
- Moon burner: off-center circular bore produces progressive-regressive long burn, though has slight asymmetric CG characteristics
- Finocyl: usually a 5- or 6-legged star-like shape that can produce very level thrust, with a bit quicker burn than circular bore due to increased surface area.