Sensitive high-resolution ion microprobe
The sensitive high-resolution ion microprobe is a large-diameter, double-focusing secondary ion mass spectrometer sector instrument that was produced by Australian Scientific Instruments in Canberra, Australia and now has been taken over by Chinese company Dunyi Technology Development Co. in Beijing. Similar to the IMS 1270-1280-1300 large-geometry ion microprobes produced by CAMECA, Gennevilliers, France and like other SIMS instruments, the SHRIMP microprobe bombards a sample under vacuum with a beam of primary ions that sputters secondary ions that are focused, filtered, and measured according to their energy and mass.
The SHRIMP is primarily used for geological and geochemical applications. It can measure the isotopic and elemental abundances in minerals at a 10 to 30 μm-diameter scale and with a depth resolution of 1–5 μm. Thus, SIMS method is well-suited for the analysis of complex minerals, as often found in metamorphic terrains, some igneous rocks, and for relatively rapid analysis of statistical valid sets of detrital minerals from sedimentary rocks. The most common application of the instrument is in uranium–thorium–lead geochronology, although the SHRIMP can be used to measure some other isotope ratio measurements and trace element abundances.
History and scientific impact
The SHRIMP originated in 1973 with a proposal by Prof. Bill Compston, trying to build an ion microprobe at the Research School of Earth Sciences of the Australian National University that exceeded the sensitivity and resolution of ion probes available at the time in order to analyse individual mineral grains. Optic designer Steve Clement based the prototype instrument on a design by Matsuda which minimised aberrations in transmitting ions through the various sectors. The instrument was built from 1975 and 1977 with testing and redesigning from 1978. The first successful geological applications occurred in 1980.The first major scientific impact was the discovery of Hadean zircon grains at Mt. Narryer in Western Australia and then later at the nearby Jack Hills. These results and the SHRIMP analytical method itself were initially questioned but subsequent conventional analysis were partially confirmed. SHRIMP-I also pioneered ion microprobe studies of titanium, hafnium and sulfur isotopic systems.
Growing interest from commercial companies and other academic research groups, notably Prof. John de Laeter of Curtin University, led to the project in 1989 to build a commercial version of the instrument, the SHRIMP-II, in association with ANUTECH, the Australian National University's commercial arm. Refined ion optic designs in the mid-1990s prompted development and construction of the SHRIMP-RG with improved mass resolution. Further advances in design have also led to multiple ion collection systems, negative-ion stable isotope measurements and on-going work in developing a dedicated instrument for light stable isotopes.
Fifteen SHRIMP instruments have now been installed around the world and SHRIMP results have been reported in more than 2000 peer reviewed scientific papers. SHRIMP is an important tool for understanding early Earth history having analysed some of the oldest terrestrial material including the Acasta Gneiss and further extending the age of zircons from the Jack Hills and the oldest impact crater on the planet. Other significant milestones include the first U/Pb ages for lunar zircon and Martian apatite dating. More recent uses include the determination of Ordovician sea surface temperature, the timing of snowball Earth events and development of stable isotope techniques.