STS-133


STS-133 was the 133rd mission in NASA's Space Shuttle program; during the mission, Space Shuttle Discovery docked with the International Space Station. It was Discovery's 39th and final mission. The mission launched on February 24, 2011, and landed on March 9, 2011. The crew consisted of six American astronauts, all of whom had been on prior spaceflights, headed by Commander Steven Lindsey. The crew joined the long-duration six person crew of Expedition 26, who were already aboard the space station. About a month before lift-off, one of the original crew members, Tim Kopra, was injured in a bicycle accident. He was replaced by Stephen Bowen.
The mission transported several items to the space station, including the Permanent Multipurpose Module Leonardo, which was left permanently docked to one of the station's ports. The shuttle also carried the third of four ExPRESS Logistics Carriers to the ISS, as well as a humanoid robot called Robonaut. The mission marked both the 133rd flight of the Space Shuttle program and the 39th and final flight of Discovery, with the orbiter completing a cumulative total of a whole year in space.
The mission was affected by a series of delays due to technical problems with the external tank and, to a lesser extent, the payload. The launch, initially scheduled for September 2010, was pushed back to October, then to November, then finally to February 2011.

Crew

NASA announced the STS-133 crew on September 18, 2009, and training began in October 2009. The original crew consisted of commander Steven Lindsey, pilot Eric Boe, and mission specialists Alvin Drew, Timothy Kopra, Michael Barratt, and Nicole Stott. However, on January 19, 2011, about a month before launch, it was announced that Stephen Bowen would replace original crew member Tim Kopra, after Kopra was injured in a bicycle accident. All six crew members had flown at least one spaceflight before; five of the crew members, all but commander Steven Lindsey, were part of NASA's Astronaut Group 18, all being selected in the year 2000.
The mission commander, Steven Lindsey, handed over his position as Chief of the Astronaut Office position to Peggy Whitson in order to lead the mission. For the first time, two mission crew members were in space when a crew assignment announcement was made, as Nicole Stott and Michael Barratt were aboard the ISS as part of the Expedition 20 crew. During STS-133, Alvin Drew became the last African-American astronaut to fly on the Space Shuttle, as no African-Americans were among the crews of STS-134 and STS-135. Having flown onboard Atlantis' STS-132 mission, Bowen became the first and the only NASA astronaut to be launched on two consecutive missions, until Doug Hurley launched aboard Crew Dragon Demo-2 in May 2020, after having previously launched on STS-135.

Crew seat assignments

Mission payload

Permanent Multipurpose Module

STS-133 left Leonardo, one of the three Multi-Purpose Logistics Modules, on the space station as a Permanent Multipurpose Module. PMM Leonardo added much-needed storage space on the ISS, and was launched with a near-full load of payloads.
The construction of the Leonardo MPLM by the Italian Space Agency commenced in April 1996. In August 1998, after the completion of primary construction, Leonardo was delivered to the Kennedy Space Center. In March 2001, Leonardo made its first mission on Discovery as part of the STS-102 flight. The liftoff of Leonardo inside Discoverys payload bay on STS-102 marked the first of seven MPLM flights prior to STS-133.
With the landing of
Discovery after the STS-131 mission, Leonardo was transferred back to the Space Station Processing Facility at Kennedy Space Center. Leonardo began receiving modifications and reconfigurations immediately to convert it for permanent attachment to the space station and to facilitate on-orbit maintenance. Some equipment was removed to reduce the overall weight of Leonardo. These removals resulted in a net weight loss of. Additional modifications to Leonardo included the installation of upgraded multi-layer insulation and Micro Meteoroid Orbital Debris shielding to increase the ability of the PMM to handle potential impacts of micrometeoroids or orbital debris; a Planar Reflector was installed at the request of the Japanese Space Agency.
Following berthing to the space station, the contents of
Leonardo were emptied and moved to appropriate locations on the ISS. Once JAXA's Kounotori 2 arrived in February 2011, Leonardo
s now-unnecessary launch hardware was transferred to HTV2 for ultimate destruction in Earth's atmosphere.
Activities to reconfigure Leonardo following STS-133 spanned multiple station crew increments.

ExPRESS Logistics Carrier 4

The Express Logistics Carrier is a steel platform designed to support external payloads mounted to the space station starboard and port trusses with either deep space or Earthward views. On STS-133, Discovery carried the ELC-4 to the station to be positioned on the starboard 3 truss' lower inboard passive attachment system. The total weight of the ELC-4 is approximately 8,235 pounds.
The Express Logistics Carrier 4 carried several Orbital Replacement Units. Among these were a Heat Rejection System Radiator Flight Support Equipment, which takes up one whole side of the ELC. The other primary ORUs were the ExPRESS Pallet Controller Avionics 4. The HRSR launching on ELC4 was a spare, if needed, for one of the six radiators that are part of the station's external active thermal control system.

Robonaut2

Discovery carried the humanoid robot Robonaut2 to the International Space Station. The microgravity conditions aboard the space station provide an ideal opportunity for robots like R2 to work with astronauts. Although the robot's primary initial task is teaching engineers how dexterous robots behave in space, it may eventually, through upgrades and advancements, assist spacewalking astronauts to perform scientific work once it has been verified as functional on the space station. It was the first humanoid robot in space, and was stowed on board the Leonardo PMM. Once Robonaut2 was unpacked, it began initial operation inside the Destiny module for operational testing, but over time, both its location and its applications could expand.
Robonaut2 was initially designed as a prototype to be used on Earth. For its journey to the ISS, R2 received a few upgrades. Outer skin materials were exchanged to meet the ISS's strict flammability requirements. Shielding was added to reduce electromagnetic interference and onboard processors were upgraded to increase R2's radiation tolerance. The original fans were replaced with quieter ones to accommodate the station's restrictive noise environment, and the power system was rewired to run on the station's direct current system. Tests were conducted to make sure the robot could both endure the harsh conditions in space and exist in it without doing damage. R2 also underwent vibration testing that simulated the conditions it would experience during its launch onboard Discovery.
The robot weighs and is made out of nickel-plated carbon fiber and aluminum. The height of R2 from waist to head is, and it has a shoulder width of. R2 is equipped with 54 servo motors and has 42 degrees of freedom. Powered by 38 PowerPC processors, R2's systems run at 120 volts DC.

SpaceX DragonEye sensor

Space Shuttle Discovery also carried the Developmental Test Objective 701B payload using Advanced Scientific Concepts, Inc.'s DragonEye 3D Flash LiDAR detection and ranging sensor. The addition of the pulsed laser navigation sensor was the third time a Space Shuttle provided assistance to the commercial space company SpaceX, following STS-127 and STS-129. The DragonEye on STS-133 incorporated several design and software improvements from the version flown on STS-127 to provide increased performance. Its inclusion on STS-133 was part of a final test run ahead of being fully implemented on SpaceX's Dragon spacecraft, which had its maiden flight in December 2010.
The navigation sensor provides a three-dimensional image based on the time of flight of a single laser pulse from the sensor to the target and back. It provides both range and bearing information from targets that can reflect the light back such as the pressurized mating adapter 2 and those on the station's Japanese Kibo laboratory.
The DragonEye DTO was mounted onto Discovery's existing trajectory control system carrier assembly on the orbiter's docking system. SpaceX took data in parallel with Discovery's Trajectory Control Sensor system. Both the TCS and DragonEye "looked" at the retroreflectors that are on the station. After the mission, SpaceX compared the data DragonEye collected against the data collected by the TCS to evaluate DragonEye's performance.
The sensor was installed onto Discovery two weeks later than planned, following a laser rod failure during testing.

Other items

STS-133 carried the signatures of more than 500,000 students who participated in the 2010 Student Signatures in Space program, which was jointly sponsored by NASA and Lockheed Martin. The students added their signatures to posters in May 2010 as part of the annual Space Day celebration. Through their participation, students also received standards-based lessons that contained a space theme. Student Signatures in Space has been active since 1997. In that time, nearly seven million student signatures from 6,552 schools were flown on ten Space Shuttle missions.
Also carried aboard Discovery were hundreds of flags, bookmarks and patches which were distributed when the shuttle returned to Earth. The mission also flew two small Lego Space Shuttles, in honor of an educational partnership between Lego and NASA. Astronauts also carried personal mementos including medallions with connections to their schools or military careers, as well as a William Shakespeare "action figure" from the English Department of the University of Texas, a stuffed giraffe mascot from the Hermann Children's Hospital at the University of Texas, T-shirts from Lomax Junior High School in La Porte, Texas, a blue Hawaiian shirt from NASA Johnson Space Center's Education Office, and a shirt from a volunteer fire department.