Coordinated Universal Time


Coordinated Universal Time is the primary time standard globally used to regulate clocks and time. It establishes a reference for the current time, forming the basis for civil time and time zones. UTC facilitates international communication, navigation, scientific research, and commerce.
UTC has been widely embraced by most countries and is the effective successor to Greenwich Mean Time in everyday usage and common applications. In specialised domains such as scientific research, navigation, and timekeeping, other standards, such as UT1 and International Atomic Time, are also used alongside UTC.
UTC is based on TAI, which is a weighted average of hundreds of atomic clocks worldwide. UTC is within about one second of mean solar time at 0° longitude, the currently used prime meridian, and is not adjusted for daylight saving time.
The coordination of time and frequency transmissions around the world began on 1 January 1960. UTC was first officially adopted as a standard in 1963 and "UTC" became the official abbreviation of Coordinated Universal Time in 1967. The current version of UTC is defined by the International Telecommunication Union.
Since adoption, UTC has been adjusted several times, notably adding leap seconds starting in 1972. Recent years have seen significant developments in the realm of UTC, particularly in discussions about eliminating leap seconds from the timekeeping system because leap seconds occasionally disrupt timekeeping systems worldwide. The General Conference on Weights and Measures adopted a resolution to alter UTC with a new system that would eliminate leap seconds by 2035.

Etymology

The official abbreviation for Coordinated Universal Time is UTC. This abbreviation comes as a result of the International Telecommunication Union and the International Astronomical Union wanting to use the same abbreviation in all languages. The compromise that emerged was UTC, which conforms to the pattern for the abbreviations of the variants of Universal Time.
McCarthy described the origin of the abbreviation:
In 1967 the CCIR adopted the names Coordinated Universal Time and Temps Universel Coordonné for the English and French names with the acronym UTC to be used in both languages. The name "Coordinated Universal Time " was approved by a resolution of IAU Commissions 4 and 31 at the 13th General Assembly in 1967.

Uses

s around the world are expressed using positive, zero, or negative offsets from UTC, as in the list of time zones by UTC offset.
The westernmost time zone uses UTC−12, being twelve hours behind UTC; the easternmost time zone uses UTC+14, being fourteen hours ahead of UTC. In 1995, the island nation of Kiribati moved those of its atolls in the Line Islands from UTC−10 to UTC+14 so that the islands and atolls of Kiribati would all be on the same day.
UTC is used in many Internet and World Wide Web standards. The Network Time Protocol, designed to synchronise the clocks of computers over the Internet, transmits time information from the UTC system. If only milliseconds precision is needed, clients can obtain the current UTC from a number of official internet UTC servers. For sub-microsecond precision, clients can obtain the time from satellite signals.
UTC is also the time standard used in aviation, e.g. for flight plans and air traffic control. In this context it is frequently referred to as Zulu time, as described below. Weather forecasts and maps all use UTC to avoid confusion about time zones and daylight saving time. The International Space Station also uses UTC as a time standard.
Amateur radio operators often schedule their radio contacts in UTC, because transmissions on some frequencies can be picked up in many time zones.

Mechanism

UTC divides time into days, hours, minutes, and seconds. Days are conventionally identified using the Gregorian calendar, but Julian day numbers can also be used. Each day contains 24 hours and each hour contains 60 minutes. The number of seconds in a minute is usually 60, but with an occasional leap second, it may be 61 or 59 instead. Thus, in the UTC time scale, the second and all smaller time units are of constant duration, but the minute and all larger time units are of variable duration. Decisions to introduce a leap second are announced at least six months in advance in "Bulletin C" produced by the International Earth Rotation and Reference Systems Service. The leap seconds cannot be predicted far in advance due to the unpredictable rate of the rotation of Earth.
Nearly all UTC days contain exactly 86,400 SI seconds with exactly 60 seconds in each minute. UTC is within about one second of mean solar time at 0° longitude,. The mean solar day is slightly longer than 86,400 SI seconds so occasionally the last minute of a UTC day is adjusted to have 61 seconds. The extra second is called a leap second. It accounts for the grand total of the extra length of all the mean solar days since the previous leap second. The last minute of a UTC day is permitted to contain 59 seconds to cover the remote possibility of the Earth rotating faster, but that has not yet been necessary. The irregular day lengths mean fractional Julian days do not work properly with UTC.
Since 1972, UTC may be calculated by subtracting the accumulated leap seconds from International Atomic Time, which is a coordinate time scale tracking notional proper time on the rotating surface of the Earth. In order to maintain a close approximation to UT1, UTC occasionally has discontinuities where it changes from one linear function of TAI to another. These discontinuities take the form of leap seconds implemented by a UTC day of irregular length. Discontinuities in UTC occurred only at the end of June or December. However, there is provision for them to happen at the end of March and September as a second preference as well. The International Earth Rotation and Reference Systems Service tracks and publishes the difference between UTC and Universal Time, DUT1= UT1− UTC, and introduces discontinuities into UTC to keep DUT1 in the interval.
As with TAI, UTC is only known with the highest precision in retrospect. Users who require an approximation in real time must obtain it from a time laboratory, which disseminates an approximation using techniques such as GPS or radio time signals. Such approximations are designated UTC, where k is an abbreviation for the time laboratory. The time of events may be provisionally recorded against one of these approximations; later corrections may be applied using the International Bureau of Weights and Measures monthly publication of tables of differences between canonical TAI/UTC and TAI/UTC as estimated in real-time by participating laboratories.
Because of time dilation, a standard clock not on the geoid, or in rapid motion, will not maintain synchronicity with UTC. Therefore, telemetry from clocks with a known relation to the geoid is used to provide UTC when required, on locations such as those of spacecraft.
It is impossible to compute the exact time interval elapsed between two UTC timestamps without consulting a table showing how many leap seconds occurred during that interval. By extension, it is not possible to compute the precise duration of a time interval that ends in the future and may encompass an unknown number of leap seconds. Therefore, many scientific applications that require precise measurement of long intervals use TAI instead. TAI is also commonly used by systems that cannot handle leap seconds. GPS time always remains exactly 19 seconds behind TAI.

Time zones

Time zones are usually defined as differing from UTC by an integer number of hours, although the laws of each jurisdiction would have to be consulted if sub-second accuracy were required. Several jurisdictions have established time zones that differ by an odd integer number of half-hours or quarter-hours from UT1 or UTC.
Current civil time in a particular time zone can be determined by adding or subtracting the number of hours and minutes specified by the UTC offset, which ranges from UTC−12:00 in the west to UTC+14:00 in the east.
The time zone using UTC is sometimes denoted UTC+00:00 or by the letter Z—a reference to the equivalent nautical time zone, which has been denoted by a Z since about 1950. Time zones were identified by successive letters of the alphabet and the Greenwich time zone was marked by a Z as it was the point of origin. The letter also refers to the "zone description" of zero hours, which has been used since 1920. Since the NATO phonetic alphabet word for Z is "Zulu", UTC is sometimes known as "Zulu time". This is especially true in aviation, where "Zulu" is the universal standard. This ensures that all pilots, regardless of location, are using the same 24-hour clock, thus avoiding confusion when flying between time zones. See the list of military time zones for letters used in addition to Z in qualifying time zones other than Greenwich.
On electronic devices which only allow the time zone to be configured using maps or city names, UTC can be selected indirectly by selecting cities such as Accra in Ghana or Reykjavík in Iceland as they are always on UTC and do not currently use daylight saving time.

Daylight saving time

UTC does not change with a change of seasons, but local time or civil time may change if a time zone jurisdiction observes daylight saving time. For example, local time on the east coast of the United States is five hours behind UTC during winter, but four hours behind while daylight saving is observed there.

History

In 1928, the term Universal Time was introduced by the International Astronomical Union to refer to GMT, with the day starting at midnight. Until the 1950s, broadcast time signals were based on UT, and hence on the rotation of the Earth.
In 1955, the caesium atomic clock was invented. This provided a form of timekeeping that was both more stable and more convenient than astronomical observations. In 1956, the U.S. National Bureau of Standards and U.S. Naval Observatory started to develop atomic frequency time scales; by 1959, these time scales were used in generating the WWV time signals, named for the shortwave radio station that broadcasts them. In 1960, the U.S. Naval Observatory, the Royal Greenwich Observatory, and the UK National Physical Laboratory coordinated their radio broadcasts so that time steps and frequency changes were coordinated, and the resulting time scale was informally referred to as "Coordinated Universal Time".
In a controversial decision, the frequency of the signals was initially set to match the rate of UT, but then kept at the same frequency by the use of atomic clocks and deliberately allowed to drift away from UT. When the divergence grew significantly, the signal was phase shifted by 20 ms to bring it back into agreement with UT. Twenty-nine such steps were used before 1960.
In 1958, data was published linking the frequency for the caesium transition, newly established, with the ephemeris second. The ephemeris second is a unit in the system of time that, when used as the independent variable in the laws of motion that govern the movement of the planets and moons in the Solar System, enables the laws of motion to accurately predict the observed positions of Solar System bodies. Within the limits of observable accuracy, ephemeris seconds are of constant length, as are atomic seconds. This publication allowed a value to be chosen for the length of the atomic second that would accord with the celestial laws of motion.
The coordination of time and frequency transmissions around the world began on 1 January 1960. UTC was first officially adopted in 1963 as CCIR Recommendation 374, Standard-Frequency and Time-Signal Emissions, and "UTC" became the official abbreviation of Coordinated Universal Time in 1967.
In 1961, the Bureau International de l'Heure began coordinating the UTC process internationally. From then on, there were time steps every few months, and frequency changes at the end of each year. The jumps increased in size to 0.1 seconds. This UTC was intended to permit a very close approximation to UT2.
In 1967, the SI second was redefined in terms of the frequency supplied by a caesium atomic clock. The length of second so defined was practically equal to the second of ephemeris time. This was the frequency that had been provisionally used in TAI since 1958. It was soon decided that having two types of second with different lengths, namely the UTC second and the SI second used in TAI, was a bad idea. It was thought better for time signals to maintain a consistent frequency, and that this frequency should match the SI second. Thus it would be necessary to rely on time steps alone to maintain the approximation of UT. This was tried experimentally in a service known as "Stepped Atomic Time", which ticked at the same rate as TAI and used jumps of 0.2 seconds to stay synchronised with UT2.
There was also dissatisfaction with the frequent jumps in UTC. In 1968, Louis Essen, the inventor of the caesium atomic clock, and G. M. R. Winkler both independently proposed that steps should be of 1 second only. to simplify future adjustments. This system was eventually approved as leap seconds in a new UTC in 1970 and implemented in 1972, along with the idea of maintaining the UTC second equal to the TAI second. This CCIR Recommendation 460 "stated that carrier frequencies and time intervals should be maintained constant and should correspond to the definition of the SI second; step adjustments, when necessary, should be exactly 1 s to maintain approximate agreement with Universal Time ; and standard signals should contain information on the difference between UTC and UT."
As an intermediate step at the end of 1971, there was a final irregular jump of exactly 0.107758 TAI seconds, making the total of all the small time steps and frequency shifts in UTC or TAI during 1958–1971 exactly ten seconds, so that was exactly, and a whole number of seconds thereafter. At the same time, the tick rate of UTC was changed to exactly match TAI. UTC also started to track UT1 rather than UT2. Some time signals started to broadcast the DUT1 correction for applications requiring a closer approximation of UT1 than UTC provided.
The current version of UTC is defined by International Telecommunication Union Recommendation, Standard-frequency and time-signal emissions, and is based on International Atomic Time with leap seconds added at irregular intervals to compensate for the accumulated difference between TAI and time measured by Earth's rotation. Leap seconds are inserted as necessary to keep UTC within 0.9 seconds of the UT1 variant of universal time. See for the number of leap seconds inserted to date.