Sewage sludge
Sewage sludge is the residual, semi-solid material that is produced as a by-product during sewage treatment of industrial or municipal wastewater. The term "septage" also refers to sludge from simple wastewater treatment but is connected to simple on-site sanitation systems, such as septic tanks.
After treatment, and dependent upon the quality of sludge produced, sewage sludge is most commonly either disposed of in landfills, dumped in the ocean or applied to land for its fertilizing properties, as pioneered by the product Milorganite.
The term "Biosolids" is often used as an alternative to the term sewage sludge in the United States, particularly in conjunction with reuse of sewage sludge as fertilizer after sewage sludge treatment. Biosolids can be defined as organic wastewater solids that can be reused after stabilization processes such as anaerobic digestion and composting. Opponents of sewage sludge reuse reject this term as a public relations term.
Treatment process
is the process of removing contaminants from wastewater. Sewage sludge is produced from the treatment of wastewater in sewage treatment plants and consists of two basic forms — raw primary sludge and secondary sludge, also known as activated sludge in the case of the activated sludge process.Sewage sludge is usually treated by one or several of the following treatment steps: lime stabilization, thickening, dewatering, drying, anaerobic digestion or composting. Some treatment processes, such as composting and alkaline stabilization, that involve significant amendments may affect contaminant strength and concentration: depending on the process and the contaminant in question, treatment may decrease or in some cases increase the bioavailability and/or solubility of contaminants. Regarding sludge stabilization processes, anaerobic and aerobic digestion seem to be the most common used methods in EU-27.
When fresh sewage or wastewater enters a primary settling tank, approximately 50% of the suspended solid matter will settle out in an hour and a half. This collection of solids is known as raw sludge or primary solids and is said to be "fresh" before anaerobic processes become active. The sludge will become putrescent in a short time once anaerobic bacteria take over, and must be removed from the sedimentation tank before this happens.
This is accomplished in one of two ways. Most commonly, the fresh sludge is continuously extracted from the bottom of a hopper-shaped tank by mechanical scrapers and passed to separate sludge-digestion tanks. In some treatment plants an Imhoff tank is used: sludge settles through a slot into the lower story or digestion chamber, where it is decomposed by anaerobic bacteria, resulting in liquefaction and reduced volume of the sludge. The secondary treatment process also generates a sludge largely composed of bacteria and protozoa with entrained fine solids, and this is removed by settlement in secondary settlement tanks. Both sludge streams are typically combined and are processed by anaerobic or aerobic treatment process at either elevated or ambient temperatures. After digesting for an extended period, the result is called "digested" sludge and may be disposed of by drying and then landfilling.
Following treatment, sewage sludge is either landfilled, dumped in the ocean, incinerated, applied on agricultural land or, in some cases, retailed or given away for free to the general public. According to a review article published in 2012, sludge reuse was the predominant choice for sludge management in EU-15, following by incineration. On the other hand, the most common disposal method in EU-12 countries was landfilling.
Quantities produced
The amount of sewage sludge produced is proportional to the amount and concentration of wastewater treated, and it also depends on the type of wastewater treatment process used. It can be expressed as kg dry solids per cubic metre of wastewater treated. The total sludge production from a wastewater treatment process is the sum of sludge from primary settling tanks plus excess sludge from the biological treatment step. For example, primary sedimentation produces about 110–170 kg/ML of so-called primary sludge, with a value of 150 kg/ML regarded as being typical for municipal wastewater in the U.S. or Europe. The sludge production is expressed as kg of dry solids produced per ML of wastewater treated; one mega litre is 103 m3. Of the biological treatment processes, the activated sludge process produces about 70–100 kg/ML of waste activated sludge, and a trickling filter process produces slightly less sludge from the biological part of the process: 60–100 kg/ML. This means that the total sludge production of an activated sludge process that uses primary sedimentation tanks is in the range of 180–270 kg/ML, being the sum of primary sludge and waste activated sludge.United States municipal wastewater treatment plants in 1997 produced about 7.7 million dry tons of sewage sludge, and about 6.8 million dry tons in 1998 according to EPA estimates. As of 2004, about 60% of all sewage sludge was applied to land as a soil amendment and fertilizer for growing crops. In a review article published in 2012, it was reported that a total amount of 10.1 million tn DS/year were produced in EU-27 countries. As of 2023, the EU produced 2 to 3 million tons of sludge each year. Worldwide it is estimated that as much as 75 Million Mg of dry sewage sludge per year.
Production of sewage sludge can be reduced by conversion from flush toilets to dry toilets such as urine-diverting dry toilets and composting toilets.
Disposal
Landfill
Sewage sludge deposition in landfills can circulate human-virulent species of Cryptosporidium and Giardia pathogens. Sonication and quicklime stabilization are most effective in inactivation of these pathogens; microwave energy disintegration and top-soil stabilization were less effective.A Texas county has launched a first-of-its-kind criminal investigation into waste management giant Synagro over PFAS-contaminated sewage sludge it is selling to Texas farmers as a cheap alternative to fertilizer.
As of 2023, 11% of sludge produced in the EU was disposed of in landfills. The EU is attempting to phase out the disposal of sludge in landfills.
Ocean dumping
It used to be common practice to dump sewage sludge into the ocean, however, this practice has stopped in many nations due to environmental concerns as well to domestic and international laws and treaties. Ronald Reagan signed the law that prohibited ocean dumping as a means of disposal of sewage sludge in the US in 1988.Incineration
Sludge can also be incinerated in sludge incineration plants which comes with its own set of environmental concerns. Pyrolysis of the sludge to create syngas and potentially biochar is possible, as is combustion of biofuel produced from drying sewage sludge or incineration in a waste-to-energy facility for direct production of electricity and steam for district heating or industrial uses.Thermal processes can greatly reduce the volume of the sludge, as well as achieve remediation of all or some of the biological concerns. Direct waste-to-energy incineration and complete combustion systems will require multi-step cleaning of the exhaust gas, to ensure no hazardous substances are released. In addition, the ash produced by incineration or incomplete combustion processes may be difficult to use without subsequent treatment due to high heavy metal content; solutions to this include leaching of the ashes to remove heavy metals or in the case of ash produced in a complete-combustion process, or with biochar produced from a pyrolytic process, the heavy metals may be fixed in place and the ash material readily usable as a LEEDs preferred additive to concrete or asphalt.
Examples of other ways to use dried sewage sludge as an energy resource include the Gate 5 Energy System, an innovative process to power a steam turbine using heat from burning milled and dried sewage sludge, or combining dried sewage sludge with coal in coal-fired power stations. In both cases this allows for production of electricity with less carbon-dioxide emissions than conventional coal-fired power stations.
As of 2023, 27% of sludge produced in the EU was incinerated.
Use
Land application
is a term widely used to denote the byproduct of domestic and commercial sewage and wastewater treatment that is to be used in agriculture. National regulations that dictate the practice of land application of treated sewage sludge differ widely and e.g. in the US there are widespread disputes about this practice.Depending on their level of treatment and resultant pollutant content, biosolids can be used in regulated applications for non-food agriculture, food agriculture, or distribution for unlimited use. Treated biosolids can be produced in cake, granular, pellet, or liquid form and are spread over land before being incorporated into the soil or injected directly into the soil by specialist contractors. Such use was pioneered by the production of Milorganite in 1926.
Use of sewage sludge has shown an increase in level of soil available phosphorus and soil salinity.
The findings of a 20-year field study of air, land, and water in Arizona, concluded that use of biosolids is sustainable and improves the soil and crops. Other studies report that plants uptake large quantities of heavy metals and toxic pollutants that are retained by produce, which is then consumed by humans.
A PhD thesis studying the addition of sludge to neutralize soil acidity concluded that the practice was not recommended if large amounts are used because the sludge produces acids when it oxidizes.
Studies have indicated that pharmaceuticals and personal care products, which often adsorb to sludge during wastewater treatment, can persist in agricultural soils following biosolid application. Some of these chemicals, including potential endocrine disruptor triclosan, can also travel through the soil column and leach into agricultural tile drainage at detectable levels. Other studies, however, have shown that these chemicals remain adsorbed to surface soil particles, making them more susceptible to surface erosion than infiltration. These studies are also mixed in their findings regarding the persistence of chemicals such as triclosan, triclocarban, and other pharmaceuticals. The impact of this persistence in soils is unknown, but the link to human and land animal health is likely tied to the capacity for plants to absorb and accumulate these chemicals in their consumed tissues. Studies of this kind are in early stages, but evidence of root uptake and translocation to leaves did occur for both triclosan and triclocarban in soybeans. This effect was not present in corn when tested in a different study.
A cautionary approach to land application of biosolids has been advocated by some for regions where soils have lower capacities for toxics absorption or due to the presence of unknowns in sewage biosolids. In 2007 the Northeast Regional Multi-State Research Committee issued conservative guidelines tailored to the soils and conditions typical of the northeastern US.
Use of sewage sludge is prohibited for produce to be labeled USDA-certified organic. In 2014 the United States grocery chain Whole Foods banned produce grown in sewage sludge.
Treated sewage sludge has been used in the UK, Europe and China agriculturally for more than 80 years, though there is increasing pressure in some countries to stop the practice of land application due to farm land contamination and negative public opinion. In the 1990s, there was pressure in some European countries to ban the use of sewage sludge as a fertilizer. Switzerland, Sweden, Austria, and others introduced a ban. Still, the dominant method for disposal of sewage sludge in the EU is via application to agricultural lands. As of 2023, 40% of sludge produced in the EU was used on agricultural land. Since the 1960s there has been cooperative activity with industry to reduce the inputs of persistent substances from factories. This has been very successful and, for example, the content of cadmium in sewage sludge in major European cities is now only 1% of what it was in 1970.