Pusher configuration
In aeronautical and naval engineering, pusher configuration is the term used to describe a drivetrain of air- or watercraft with propulsion device after the engine. This is in contrast to the more conventional tractor configuration, which places them in front.
Though the term is most commonly applied to aircraft, its most ubiquitous propeller example is a common outboard motor for a small boat.
“Pusher configuration” describes the specific thrust device attached to a craft, either aerostats or aerodynes or others types such as hovercraft, airboats, and propeller-driven snowmobiles.
History
The rubber-powered "Planophore", designed by Alphonse Pénaud in 1871, was an early successful model aircraft with a pusher propeller.Many early aircraft were "pushers", including the Wright Flyer, the Santos-Dumont 14-bis, the Voisin-Farman I, and the Curtiss Model D used by Eugene Ely for the first ship landing on January 18, 1911. Henri Farman's pusher Farman III and its successors were so influential in Britain that pushers in general became known as the "Farman type". Other early pusher configurations were variations on this theme.
The classic "Farman" pusher had the propeller "mounted behind the main lifting surface" with the engine fixed to the lower wing or between the wings, immediately forward of the propeller in a stub fuselage called a nacelle. The main difficulty with this type of pusher design was attaching the tail. This needed to be in the same general location as on a tractor aircraft, but its support structure had to avoid the propeller.
The earliest examples of pushers relied on a canard but this has serious aerodynamic implications that the early designers were unable to resolve. Typically, mounting the tail was done with a complex wire-braced framework that created a lot of drag. Well before the beginning of the First World War, this drag was recognized as just one of the factors that would ensure that a Farman-style pusher would have an inferior performance to an otherwise similar tractor type.
The U.S. Army banned pusher aircraft in late 1914 after several pilots died in crashes of aircraft of this type, so from about 1912 onwards, the great majority of new U.S. landplane designs were tractor biplanes, with pushers of all types becoming regarded as old-fashioned on both sides of the Atlantic. However, new pusher designs continued to be designed right up to the armistice, such as the Vickers Vampire, although few entered service after 1916.
At least up to the end of 1916, however, pushers were still favored as gun-carrying aircraft by the British Royal Flying Corps, because a forward-firing gun could be used without being obstructed by the arc of the propeller. With the successful introduction of Fokker's mechanism for synchronizing the firing of a machine gun with the blades of a moving propeller, followed quickly by the widespread adoption of synchronization gears by all the combatants in 1916 and 1917, the tractor configuration became almost universally favored, and pushers were reduced to the tiny minority of new aircraft designs that had a specific reason for using the arrangement.
Both the British and French continued to use pusher-configured bombers, though there was no clear preference either way until 1917. Such aircraft included the Voisin bombers, the Vickers F.B.5 "Gunbus", and the Royal Aircraft Factory F.E.2; however, even these found themselves being shunted into training roles before disappearing entirely. Possibly the last fighter to use the Farman pusher configuration was the 1931 Vickers Type 161 COW gun fighter.
During the long eclipse of the configuration the use of pusher propellers continued in aircraft which derived a small benefit from the installation and could have been built as tractors. Biplane flying boats had for some time often been fitted with engines located above the fuselage to offer maximum clearance from the water, often driving pusher propellers to avoid spray and the hazards involved by keeping them well clear of the cockpit. The Supermarine Walrus was a late example of this layout.
The so-called push/pull layout, combining the tractor and pusher configurations—that is, with one or more propellers facing forward and one or more others facing back—was another idea that continues to be used from time to time as a means of reducing the asymmetric effects of an outboard engine failure, such as on the Farman F.222, but at the cost of a severely reduced efficiency on the rear propellers, which were often smaller and attached to lower-powered engines as a result.
By the late 1930s, the widespread adoption of all-metal stressed skin construction of aircraft meant, at least in theory, that the aerodynamic penalties that had limited the performance of pushers were reduced; however, any improvement that boosts pusher performance also boosts the performance of conventional aircraft, and they remained a rarity in operational service—so the gap was narrowed but was closed entirely.
During World War II, experiments were conducted with pusher fighters by most of the major powers. Difficulties remained, particularly that a pilot having to bail out of a pusher was liable to pass through the propeller arc. This meant that of all the types concerned, only the relatively conventional Swedish SAAB 21 of 1943 went into series production. Other problems related to the aerodynamics of canard layouts, which had been used on most of the pushers, proved more difficult to resolve. One of the world's first ejection seats was designed for this aircraft, which later re-emerged with a jet engine.
The largest pusher aircraft to fly was the Convair B-36 "Peacemaker" of 1946, which was also the largest bomber ever operated by the United States. It had six 28-cylinder Pratt & Whitney Wasp Major radial engines mounted in the wing, each driving a pusher propeller located behind the trailing edge of the wing, plus four jet engines.
Although the vast majority of propeller-driven aircraft continue to use a tractor configuration, there has been in recent years something of a revival of interest in pusher designs: in light homebuilt aircraft such as Burt Rutan's canard designs since 1975, ultralights such as the Quad City Challenger, flexwings, paramotors, powered parachutes, and autogyros. The configuration is also often used for unmanned aerial vehicles, due to requirements for a forward fuselage free of any engine interference.
The Aero Dynamics Sparrow Hawk was another homebuilt aircraft constructed chiefly in the 1990s.
Configurations
Airships are the oldest type of pusher aircraft, going back to Frenchman Henri Giffard's pioneering airship of 1852.Pusher aircraft have been built in many different configurations. In the vast majority of fixed-wing aircraft, the propeller or propellers are still located just behind the trailing edge of the "main lifting surface", or below the wing with the engine being located behind the crew position.
Conventional aircraft layout have a tail for stabilization and control. The propeller may be close to the engine, as the usual direct drive:
- The propeller may be ahead of the tail: inside the framework, in line with the fuselage, between tail booms, above the fuselage on wing, on nacelle or axial pod, or coaxially around rear fuselage.
- The propeller may be located behind the vertical tail, under the horizontal tail.
- Engines and propellers may be located on wings or on lateral pods.
- The propeller may be located ahead of the tail, behind the wing or inside the airframe.
- The propeller may be located inside the tail, either cruciform or ducted fan.
- The propeller may be located at the rear, behind a conventional tail.
- The propeller may be located above the fuselage such as on many small flying boats
In tailless aircraft such as Lippisch Delta 1 and Westland-Hill Pterodactyl types I and IV, horizontal stabilizers at the rear of the aircraft are absent. Flying wings like the Northrop YB-35 are tailless aircraft without a distinct fuselage. In these installations, the engines are either mounted in nacelles or the fuselage on tailless aircraft, or buried in the wing on flying wings, driving propellers behind the trailing edge of the wing, often by extension shaft.
Almost without exception, flexwing aircraft, paramotors, and powered parachutes use a pusher configuration.
Other craft with pusher configurations run on flat surfaces, land, water, snow, or ice. Thrust is provided by propellers and ducted fans, located to the rear of the vehicle. These include:
- Hovercraft, lifted by an air cushion, such as the 58-passenger SR.N6.
- Airboats, flat bottomed vessels planing on water.
- Aerosledges, also known as the aerosleigh, propeller-driven sledge, or propeller-driven snowmobile.
In aircraft
Advantages
The drive shaft of a pusher engine is in compression in normal operation, which places less stress on it than being in tension in a tractor configuration.Practical requirements
Placing the cockpit forward of the wing to balance the weight of the engine aft improves visibility for the crew. In military aircraft, front armament could be used more easily on account of the gun not needing to synchronize itself with the propeller, although the risk that spent casings fly into the props at the back somewhat offset this advantage.Aircraft where the engine is carried by, or very close to, the pilot place the engine behind the pilot to minimize the danger to the pilot's arms and legs. These two factors mean that this configuration was widely used for early combat aircraft, and remains popular today among ultralight aircraft, unmanned aerial vehicles, and radio-controlled airplanes.