Purified water


Purified water is water that has been mechanically filtered or processed to remove impurities and make it suitable for use. Distilled water was the most common form of purified water but water is more frequently purified by other processes including capacitive deionization, reverse osmosis, carbon filtering, microfiltration, ultrafiltration, ultraviolet oxidation, or electrodeionization. Combinations of a number of these processes have come into use to produce ultrapure water of such high purity that its trace contaminants are measured in parts per billion or parts per trillion.
Purified water has many uses, largely in the production of medications, in science and engineering laboratories and industries, and is produced in a range of purities. It is also used in the commercial beverage industry as the primary ingredient of any given trademarked bottling formula, in order to maintain product consistency. It can be produced on-site for immediate use or purchased in containers. Purified water in colloquial English can also refer to water that has been treated to neutralize, but not necessarily remove contaminants considered harmful to humans or animals.

Parameters of water purity

Purified water is usually produced by the purification of drinking water or ground water. The impurities that may need to be removed are:
  • inorganic ions
  • organic compounds
  • bacteria
  • endotoxins and nucleases
  • particulates
  • gases

    Purification methods

Distillation

Distilled water is produced by a process of distillation. Distillation involves boiling the water and then condensing the vapor into a clean container, leaving solid contaminants behind. Distillation produces very pure water. A white or yellowish mineral scale is left in the distillation apparatus, which requires regular cleaning. Distilled water, like all purified water, must be stored in a sterilized container to guarantee the absence of bacteria. For many procedures, more economical alternatives are available, such as deionized water, and are used in place of distilled water.

Double distillation

Double-distilled water is prepared by slow boiling the uncontaminated condensed water vapor from a prior slow boiling. Historically, it was the de facto standard for highly purified laboratory water for biochemistry and used in laboratory trace analysis until combination purification methods of water purification became widespread.

Deionization

Deionized water, often synonymous with demineralized water/''DM water'', is water that has had almost all of its mineral ions removed, such as cations like sodium, calcium, iron, and copper, and anions such as chloride and sulfate. Deionization is a chemical process that uses specially manufactured ion-exchange resins, which exchange hydrogen and hydroxide ions for dissolved minerals, and then recombine to form water. Because most non-particulate water impurities are dissolved salts, deionization produces highly pure water that is generally similar to distilled water, with the advantage that the process is quicker and does not build up scale.
However, deionization does not significantly remove uncharged organic molecules, viruses, or bacteria, except by incidental trapping in the resin. Specially made strong base anion resins can remove Gram-negative bacteria. Deionization can be done continuously and inexpensively using electrodeionization.
Three types of deionization exist: co-current, counter-current, and mixed bed.

Co-current deionization

Co-current deionization refers to the original downflow process where both input water and regeneration chemicals enter at the top of an ion-exchange column and exit at the bottom. Co-current operating costs are comparatively higher than counter-current deionization because of the additional usage of regenerants. Because regenerant chemicals are dilute when they encounter the bottom or finishing resins in an ion-exchange column, the product quality is lower than a similarly sized counter-flow column.
The process is still used, and can be maximized with the fine-tuning of the flow of regenerants within the ion exchange column.

Counter-current deionization

Counter-current deionization comes in two forms, each requiring engineered internals:
  1. Upflow columns where input water enters from the bottom and regenerants enter from the top of the ion exchange column.
  2. Upflow regeneration where water enters from the top and regenerants enter from the bottom.
In both cases, separate distribution headers must be tuned to: the input water quality and flow, the time of operation between regenerations, and the desired product water analysis.
Counter-current deionization is the more attractive method of ion exchange. Chemicals flow in the opposite direction to the service flow. Less time for regeneration is required when compared to cocurrent columns. The quality of the finished product can be as low as.5 parts per million. The main advantage of counter-current deionization is the low operating cost, due to the low usage of regenerants during the regeneration process.

Mixed bed deionization

Mixed bed deionization is a 40/60 mixture of cation and anion resin combined in a single ion-exchange column. With proper pretreatment, product water purified from a single pass through a mixed bed ion exchange column is the purest that can be made. Most commonly, mixed bed demineralizers are used for final water polishing to clean the last few ions within water prior to use. Small mixed bed deionization units have no regeneration capability. Commercial mixed bed deionization units have elaborate internal water and regenerant distribution systems for regeneration. A control system operates pumps and valves for the regenerants of spent anions and cations resins within the ion exchange column. Each is regenerated separately, then remixed during the regeneration process. Because of the high quality of product water achieved, and because of the expense and difficulty of regeneration, mixed bed demineralizers are used only when the highest purity water is required.

Softening

Softening consists in preventing the possible precipitation of poorly soluble minerals from natural water due to changes occurring in the physico-chemical conditions. It is applied when poorly soluble ions present in water might precipitate as insoluble salts, or interact with a chemical process. The water is "softened" by exchanging poorly soluble divalent cations with the soluble cation. Softened water has therefore a higher electrical conductivity than deionized water. Softened water cannot be considered as truly demineralized water, but does no longer contain cations responsible for the hardness of water and causing the formation of limescale, a hard chalky deposit essentially consisting of CaCO3, building up inside kettles, hot water boilers, and pipework.

Demineralization

In the strict sense, the term demineralization should imply removing all dissolved "mineral species" from water. Thus not only removing dissolved salt as obtained by simple deionization, but also neutral dissolved "Mineral species" such as dissolved iron hydroxides or dissolved silica, two solutes often present in water. In this way, demineralized water has the same electrical conductivity as deionized water, but is purer because it does not contain non-ionized substances, i.e. neutral solutes. However, demineralized water is often used interchangeably with deionized water and can be also confused with softened water, depending on the exact definition used: removing only the cations susceptible to precipitate as insoluble minerals, or removing all the "mineral species" present in water, and thus not only dissolved ions but also neutral solute species. So, the term demineralized water is vague and deionized water or softened water should often be preferred in its place for more clarity.

Other processes

Other processes are also used to purify water, including reverse osmosis, carbon filtration, microporous filtration, ultrafiltration, ultraviolet oxidation, or electrodialysis. These are used in place of, or in addition to, the processes listed above. Processes rendering water potable but not necessarily closer to being pure H2O / hydroxide + hydronium ions include the use of dilute sodium hypochlorite, ozone, mixed-oxidants, and iodine; See discussion regarding potable water treatments under "Health effects" below.

Uses

Purified water is suitable for many applications, including autoclaves, hand-pieces, laboratory testing, laser cutting, and automotive use. Purification removes contaminants that may interfere with processes, or leave residues on evaporation. Although water is generally considered to be a good electrical conductor—for example, domestic electrical systems are considered particularly hazardous to people if they may be in contact with wet surfaces—pure water is a poor conductor. The conductivity of water is measured in Siemens per meter. Sea-water is typically 5 S/m, drinking water is typically in the range of 5-50 mS/m, while highly purified water can be as low as 5.5 μS/m, a ratio of about 1,000,000:1,000:1.
Purified water is used in the pharmaceutical industry. Water of this grade is widely used as a raw material, ingredient, and solvent in the processing, formulation, and manufacture of pharmaceutical products, active pharmaceutical ingredients and intermediates, compendial articles, and analytical reagents. The microbiological content of the water is of importance and the water must be regularly monitored and tested to show that it remains within microbiological control.
Purified water is also used in the commercial beverage industry as the primary ingredient of any given trademarked bottling formula, in order to maintain critical consistency of taste, clarity, and color. This guarantees the consumer reliably safe and satisfying drinking. In the process prior to filling and sealing, individual bottles are always rinsed with deionised water to remove any particles that could cause a change in taste.
Deionised and distilled water are used in lead–acid batteries to prevent erosion of the cells, although deionised water is the better choice as more impurities are removed from the water in the creation process.