Water heating


Water heating is a heat transfer process that uses an energy source to heat water above its initial temperature. Typical domestic uses of hot water include cooking, cleaning, bathing, and space heating. In industry, hot water and water heated to steam have many uses.
Domestically, water is traditionally heated in vessels known as water heaters, kettles, cauldrons, pots, or coppers. These metal vessels that heat a batch of water do not produce a continual supply of heated water at a preset temperature. Rarely, hot water occurs naturally, usually from natural hot springs. The temperature varies with the consumption rate, becoming cooler as flow increases.
Appliances that provide a continual supply of hot water are called water heaters, hot water heaters, hot water tanks, boilers, heat exchangers, geysers, or calorifiers. These names depend on region, and whether they heat potable or non-potable water, are in domestic or industrial use, and their energy source. In domestic installations, potable water heated for uses other than space heating is also called domestic hot water.
Fossil fuels, or solid fuels are commonly used for heating water. These may be consumed directly or may produce electricity that, in turn, heats water. Electricity to heat water may also come from any other electrical source, such as nuclear power or renewable energy. Alternative energy such as solar energy, heat pumps, hot water heat recycling, and geothermal heating can also heat water, often in combination with backup systems powered by fossil fuels or electricity.
Densely populated urban areas of some countries provide district heating of hot water. This is especially the case in Scandinavia, Finland and Poland. District heating systems supply energy for water heating and space heating from combined heat and power plants such as incinerators, central heat pumps, waste heat from industries, geothermal heating, and central solar heating. Actual heating of tap water is performed in heat exchangers at the consumers' premises. Generally the consumer has no in-building backup system as redundancy is usually significant on the district heating supply side.
Today, in the United States, domestic hot water used in homes is most commonly heated with natural gas, electric resistance, or a heat pump. Electric heat pump water heaters are significantly more efficient than electric resistance water heaters, but also more expensive to purchase. Some energy utilities offer their customers funding to help offset the higher first cost of energy efficient water heaters.

Types of water heating appliances

Hot water used for space heating may be heated by fossil fuels in a boiler, while potable water may be heated in a separate appliance. This is common practice in the US, especially when warm-air space heating is usually employed.

Storage water heaters (tank-type)

In household and commercial usage, most North American and Southern Asian water heaters are the tank type, also called storage water heaters. These consist of a cylindrical vessel or container that keeps water continuously hot and ready to use. Typical sizes for household use range from 75 to 400 L. These may use electricity, natural gas, propane, heating oil, solar, or other energy sources. Natural gas heaters are most popular in the US and most European countries, since the gas is often conveniently piped throughout cities and towns and currently is the cheapest to use. In the United States, typical natural gas water heaters for households without unusual needs are with a burner rated at.
This is a popular arrangement where higher flow rates are required for limited periods. Water is heated in a pressure vessel that can withstand a hydrostatic pressure close to that of the incoming mains supply. A pressure reducing valve is sometimes employed to limit the pressure to a safe level for the vessel. In North America, these vessels are called hot water tanks, and may incorporate an electrical resistance heater, a heat pump, or a gas or oil burner that heats water directly.
Where hot-water space heating boilers are installed, domestic hot water cylinders are usually heated indirectly by primary water from the boiler, or by an electric immersion heater. In the UK these vessels are called indirect cylinders and direct cylinders, respectively. Additionally, if these cylinders form part of a sealed system, providing mains-pressure hot water, they are known as unvented cylinders. In the US, when connected to a boiler, they are called indirect-fired water heaters.
Compared to tankless heaters, storage water heaters have the advantage of using energy at a relatively slow rate, storing the heat for later use. The disadvantage is that over time, heat escapes through the tank wall and the water cools down, activating the heating system to heat the water back up, so investing in a tank with better insulation improves this standby efficiency. Additionally, when heavy use exhausts the hot water, there is a significant delay before hot water is available again. Larger tanks tend to provide hot water with less temperature fluctuation at moderate flow rates.
Volume storage water heaters in the United States and New Zealand are typically vertical cylindrical tanks, usually standing on the floor, a 'cylinder tray' or on a platform raised a short distance above the floor. Volume storage water heaters in Spain are typically horizontal. In India, they are mainly vertical. In apartments they can be mounted in the ceiling space over laundry-utility rooms. In Australia, gas and electric outdoor tank heaters have mainly been used, but solar roof tanks are becoming fashionable.
Tiny point-of-use electric storage water heaters with capacities ranging from 832 L are made for installation in kitchen and bath cabinets or on the wall above a sink. They typically use low power heating elements, about 1 kW to 1.5 kW, and can provide hot water long enough for hand washing, or, if plumbed into an existing hot water line, until hot water arrives from a remote high capacity water heater. They may be used when retrofitting a building with hot water plumbing is too costly or impractical. Since they maintain water temperature thermostatically, they can only supply a continuous flow of hot water at extremely low flow rates, unlike high-capacity tankless heaters.
In tropical countries like Singapore and India, a storage water heater may vary from 10 L to 35 L. Smaller water heaters are sufficient, as ambient weather temperatures and incoming water temperature are moderate. The Coldest regions in India like Kashmir, people are mostly dependent on the storage type electric water heaters. Mostly 50L or 75L Storage type electric water heaters are connected to overhead water source.

Point-of-use (POU) vis-à-vis centralized hot water

A locational design decision may be made between point-of-use and centralized water heaters. Centralized water heaters are more traditional, and are still a good choice for small buildings. For larger buildings with intermittent or occasional hot water use, multiple POU water heaters may be a better choice, since they can reduce long waits for hot water to arrive from a remote heater. The decision where to locate the water heater is only partially independent of the decision of a tanked vs. tankless water heater, or the choice of energy source for the heat.

Instantaneous water heaters (tankless-type)

Tankless water heaters—also called instantaneous, continuous flow, inline, flash, on-demand, or instant-on water heaters—are gaining in popularity. These high-power water heaters instantly heat water as it flows through the device, and do not retain any water internally except for what is in the heat exchanger coil. Copper heat exchangers are preferred in these units because of their high thermal conductivity and ease of fabrication.
Tankless heaters may be installed throughout a household at more than one point-of-use, far from a central water heater, or larger centralized models may still be used to provide all the hot water requirements for an entire house. The main advantages of tankless water heaters are a plentiful continuous flow of hot water, and potential energy savings under some conditions. The main disadvantage is their much higher initial costs; a US study in Minnesota reported a 20- to 40-year payback for the tankless water heaters. In a comparison to a less efficient natural gas fired hot water tank, on-demand natural gas will cost 30% more over its useful life.
Stand-alone appliances for quickly heating water for domestic usage are known in North America as tankless or on demand water heaters. In some places, they are called multipoint heaters, geysers or ascots. In Australia and New Zealand they are called instantaneous hot water units. In Argentina they are called calefones. In that country calefones use gas instead of electricity, although gas powered tankless water heaters can also be found in other countries. A similar wood-fired appliance was known as the chip heater.
A common arrangement where hot-water space heating is employed is for a boiler also to heat potable water, providing a continuous supply of hot water without extra equipment. Appliances that can supply both space-heating and domestic hot water are called combination boilers. Though on-demand heaters provide a continuous supply of domestic hot water, the rate at which they can produce it is limited by the thermodynamics of heating water from the available fuel supplies.

Electric shower heads

Solar water heaters

Increasingly, solar powered water heaters are being used. Their solar collectors are installed outside dwellings, typically on the roof or walls or nearby, and the potable hot water storage tank is typically a pre-existing or new conventional water heater, or a water heater specifically designed for solar thermal. In Cyprus and Israel 90 percent of homes have solar water heating systems.
The most basic solar thermal models are the direct-gain type, in which the potable water is directly sent into the collector. Many such systems are said to use integrated collector storage, as direct-gain systems typically have storage integrated within the collector. Heating water directly is inherently more efficient than heating it indirectly via heat exchangers, but such systems offer very limited freeze protection, can easily heat water to temperatures unsafe for domestic use, and ICS systems suffer from severe heat loss on cold nights and cold, cloudy days.
By contrast, indirect or closed-loop systems do not allow potable water through the panels, but rather pump a heat transfer fluid through the panels. After collecting heat in the panels, the heat transfer fluid flows through a heat exchanger, transferring its heat to the potable hot water. When the panels are cooler than the storage tank or when the storage tank has already reached its maximum temperature, the controller in closed-loop systems stops the circulation pumps. In a drainback system, the water drains into a storage tank contained in conditioned or semi-conditioned space, protected from freezing temperatures. With antifreeze systems, however, the pump must be run if the panel temperature gets too hot or too cold
Flat panel collectors are typically used in closed-loop systems. Flat panels, which often resemble skylights, are the most durable type of collector, and they also have the best performance for systems designed for temperatures within of ambient temperature. Flat panels are regularly used in both pure water and antifreeze systems.
Another type of solar collector is the evacuated tube collector, which are intended for cold climates that do not experience severe hail and/or applications where high temperatures are needed. Placed in a rack, evacuated tube collectors form a row of glass tubes, each containing absorption fins attached to a central heat-conducting rod. The evacuated description refers to the vacuum created in the glass tubes during the manufacturing process, which results in very low heat loss and lets evacuated tube systems achieve extreme temperatures, far in excess of water's boiling point.