Color management


Color management is the process of ensuring consistent and accurate colors across various devices, such as monitors, printers, and cameras. It involves the use of color profiles, which are standardized descriptions of how colors should be displayed or reproduced.
Color management is necessary because different devices have different color capabilities and characteristics. For example, a monitor may display colors differently than a printer can reproduce them. Without color management, the same image may appear differently on different devices, leading to inconsistencies and inaccuracies.
To achieve color management, a color profile is created for each device involved in the color workflow. This profile describes the device's color capabilities and characteristics, such as its color gamut and color temperature. These profiles are then used to translate colors between devices, ensuring consistent and accurate color reproduction.
Color management is particularly important in industries such as graphic design, photography, and printing, where accurate color representation is crucial. It helps to maintain color consistency throughout the entire workflow, from capturing an image to displaying or printing it.
Parts of color management are implemented in the operating system, helper libraries, the application, and devices. The type of color profile that is typically used is called an ICC profile. A cross-platform view of color management is the use of an ICC-compatible color management system. The International Color Consortium is an industry consortium that has defined:
  • an open standard for a [|Color Matching Module] at the OS level
  • color profiles for:
  • * devices, including DeviceLink profiles that transform one device profile to another device profile without passing through an intermediate color space, such as L*A*B*, more accurately preserving color
  • * working spaces, the color spaces in which color data is meant to be manipulated
There are other approaches to color management besides using ICC profiles. This is partly due to history and partly because of other needs than the ICC standard covers. The film and broadcasting industries make use of some of the same concepts, but they frequently rely on more limited boutique solutions. The film industry, for instance, often uses 3D LUTs to represent a complete color transformation for a specific RGB encoding.
At the consumer level, system wide color management is available in most of Apple's products. Microsoft Windows lacks system wide color management and virtually all applications do not employ color management. Windows' media player API is not color space aware, and if applications want to color manage videos manually, they have to incur significant performance and power consumption penalties. Android supports system wide color management, but most devices ship with color management disabled.

Overview

  1. Characterize. Every color-managed device requires a personalized table, or "color profile," which characterizes the color response of that particular device.
  2. Standardize. Each color profile describes these colors relative to a standardized set of reference colors.
  3. Translate. Color-managed software then uses these standardized profiles to translate color from one device to another. This is usually performed by a color management module.

    Hardware

Characterization

To describe the behavior of various output devices, they must be compared in relation to a standard color space. Often a step called linearization is performed first, to undo the effect of gamma correction that was done to get the most out of limited 8-bit color paths. Instruments used for measuring device colors include colorimeters and spectrophotometers. As an intermediate result, the device gamut is described in the form of scattered measurement data. The transformation of the scattered measurement data into a more regular form, usable by the application, is called profiling. Profiling is a complex process involving mathematics, intense computation, judgment, testing, and iteration. After the profiling is finished, an idealized color description of the device is created. This description is called a profile.

Calibration

Calibration is like characterization, except that it can include the adjustment of the device, as opposed to just the measurement of the device. Color management is sometimes sidestepped by calibrating devices to a common standard color space such as sRGB; when such calibration is done well enough, no color translations are needed to get all devices to handle colors consistently. This avoidance of the complexity of color management was one of the goals in the development of sRGB.

Color profiles

Embedding

Image formats themselves may contain embedded color profiles but are not required to do so by the image format. The International Color Consortium standard was created to bring various developers and manufacturers together. The ICC standard permits the exchange of output device characteristics and color spaces in the form of metadata. This allows the embedding of color profiles into images as well as storing them in a database or a profile directory.

Working spaces

Working spaces, such as sRGB, Adobe RGB or ProPhoto are color spaces that facilitate good results while editing. For instance, pixels with equal values of R,G,B should appear neutral. Using a large working space will lead to posterization, while using a small working space will lead to clipping. This trade-off is a consideration for the critical image editor.

Color transformation

Color transformation, or color space conversion, is the transformation of the representation of a color from one color space to another. This calculation is required whenever data is exchanged inside a color-managed chain and carried out by a Color Matching Module. Transforming profiled color information to different output devices is achieved by referencing the profile data into a standard color space. It makes it easier to convert colors from one device to a selected standard color space and from that to the colors of another device. By ensuring that the reference color space covers the many possible colors that humans can see, this concept allows one to exchange colors between many different color output devices. Color transformations can be represented by two profiles or by a devicelink profile. In this process there are approximations involved which make sure that the image keeps its important color qualities and also gives an opportunity to control on how the colors are being changed.

Profile connection space

In the terminology of the International Color Consortium, a translation between two color spaces can go through a profile connection space : Color Space 1 → PCS → Color space 2; conversions into and out of the PCS are each specified by a profile.

Gamut mapping

In nearly every translation process, we have to deal with the fact that the color gamut of different devices vary in range which makes an accurate reproduction impossible. They therefore need some rearrangement near the borders of the gamut. Some colors must be shifted to the inside of the gamut, as they otherwise cannot be represented on the output device and would simply be clipped. This so-called gamut mismatch occurs for example, when we translate from the RGB color space with a wider gamut into the CMYK color space with a narrower gamut range. In this example, the dark highly saturated purplish-blue color of a typical computer monitor's "blue" primary is impossible to print on paper with a typical CMYK printer. The nearest approximation within the printer's gamut will be much less saturated. Conversely, an inkjet printer's "cyan" primary, a saturated mid-brightness blue, is outside the gamut of a typical computer monitor. The color management system can utilize various methods to achieve desired results and give experienced users control of the gamut mapping behavior.

Rendering intent

When the gamut of source color space exceeds that of the destination, saturated colors are liable to become clipped, or more formally burned. The color management module can deal with this problem in several ways. The ICC specification includes four different rendering intents, listed below. Before the actual rendering intent is carried out, one can temporarily simulate the rendering by soft proofing. It is a useful tool as it predicts the outcome of the colors and is available as an application in many color management systems:
In practice, photographers almost always use relative or perceptual intent, as for natural images, absolute causes color cast, while saturation produces unnatural colors. If an entire image is in-gamut, relative is perfect, but when there are out of gamut colors, which is preferable depends on a case-by-case basis. CMMs may offer options for BPC and partial chromatic adaptation.
A black point correction is not applied for absolute colorimetric or devicelink profiles. For ICCv4, it is always applied to the perceptual intent. ICCv2 sRGB profiles differ among each other in a number of ways, one of which being whether BPC is applied.

Implementation

Color management module

Color matching module is a software algorithm that adjusts the numerical values that get sent to or received from different devices so that the perceived color they produce remains consistent. The key issue here is how to deal with a color that cannot be reproduced on a certain device in order to show it through a different device as if it were visually the same color, just as when the reproducible color range between color transparencies and printed matters are different. There is no common method for this process, and the performance depends on the capability of each color matching method.
Some well known CMMs are ColorSync, Adobe CMM, Little CMS, and ArgyllCMS.