Plasmapheresis
Plasmapheresis is the removal, treatment, and return or exchange of blood plasma or components thereof from and to the blood circulation. It is thus an extracorporeal therapy, a medical procedure performed outside the body.
Three general types of plasmapheresis can be distinguished:
- Autologous, removing blood plasma, treating it in some way, and returning it to the same person, as a therapy.
- Exchange, a patient's blood plasma is removed, while blood products are given in replacement. This type is called plasma exchange or plasma exchange therapy. The removed plasma is discarded and the patient receives replacement donor plasma, albumin, or a combination of albumin and saline.
- Donation, removing blood plasma, separating its components, and returning some of them to the same person, while holding out others to become blood products that this person donates for those in need. In such a plasma donation procedure, blood is removed from the body, blood cells and plasma are separated, and the blood cells are returned, while the plasma is collected and frozen to preserve it for eventual use as fresh frozen plasma or as an ingredient in the manufacture of blood products.
Medical uses
During plasmapheresis, blood, which consists of blood cells and a clear liquid called blood plasma, is initially taken out of the body through a needle or previously implanted catheter. Plasma is then removed from the blood by a cell separator. Three procedures are commonly used to separate the plasma from the blood cells, with each method having its own advantages and disadvantages:- Discontinuous flow centrifugation: One venous catheter line is required. Typically, a 300 ml batch of blood is removed at a time and centrifuged to separate plasma from blood cells.
- Continuous flow centrifugation: Two venous lines are used. This method requires slightly less blood volume out of the body at any one time, as it is able to continuously spin out plasma.
- Plasma filtration: Two venous lines are used. The plasma is filtered using standard hemodialysis equipment. This continuous process requires that less than 100 ml of blood be outside the body at one time.
Plasmapheresis is used as a therapy in particular diseases. It is an uncommon treatment in the United States, but it is more common in Europe and particularly Japan.
An important use of plasmapheresis is in the therapy of autoimmune disorders, where the rapid removal of disease-causing autoantibodies from the circulation is required in addition to other medical therapy. It is important to note that plasma exchange therapy in and of itself is useful to temper the disease process, while simultaneous medical and immunosuppressive therapy is required for long-term management. Plasma exchange offers the quickest short-term answer to removing harmful autoantibodies; however, the production of autoantibodies by the immune system must also be suppressed, usually by the use of medications such as cyclophosphamide, cyclosporine, mycophenolate mofetil, prednisone, rituximab, or a mixture of these.
Other uses are the removal of blood proteins where these are overly abundant and cause hyperviscosity syndrome.
There is weak evidence that therapeutic plasma exchange might be of benefit in severe cases of COVID-19.
Examples of diseases that have been treated with plasmapheresis
- Acute disseminated encephalomyelitis
- Anti-NMDA receptor encephalitis
- Antiphospholipid antibody syndrome
- Behcet syndrome
- Chronic inflammatory demyelinating polyneuropathy
- Goodpasture's syndrome
- Granulomatosis with polyangiitis
- Graves' disease in infants and neonates
- Guillain–Barré syndrome
- HELLP syndrome
- HIV-related neuropathy
- Hyperviscosity syndromes:
- * Cryoglobulinemia
- * Paraproteinemia
- * Waldenström macroglobulinemia
- Idiopathic pulmonary fibrosis
- Lambert-Eaton syndrome
- Microscopic polyangiitis
- Miller Fisher syndrome
- Multiple sclerosis
- Myasthenia gravis
- Neuromyelitis optica
- Opsoclonus myoclonus syndrome
- PANDAS syndrome
- Pemphigus vulgaris
- Recurrent focal and segmental glomerulosclerosis in the transplanted kidney
- Refsum disease
- Rhabdomyolysis
- Systemic sclerosis
- Thrombotic thrombocytopenic purpura / hemolytic uremic syndrome
- Toxic epidermal necrolysis
- Transverse myelitis
Complications of plasmapheresis therapy
Aside from placing the catheter, the procedure itself has complications. When patient blood is outside of the body passing through the plasmapheresis machine, the blood has a tendency to clot. To reduce this tendency, in one common protocol, sodium citrate is infused while the blood is running through the circuit. Citrate binds to calcium in the blood, calcium being essential for blood to clot. Citrate is very effective in preventing blood from clotting; however, its use can lead to life-threateningly low calcium levels. This can be detected using the Chvostek's sign or Trousseau's sign. To prevent this complication, calcium is infused intravenously while the patient is undergoing the plasmapheresis; in addition, calcium supplementation by mouth may also be given.
Other complications include:
- Bleeding or hematoma from needle placement
- Hypotension
- Potential exposure to blood products, with risk of transfusion reactions or transfusion transmitted diseases
- Suppression of the patient's immune system
Plasma donation
Plasma donors undergo a screening process to ensure both the donor's safety and the safety of the collected product. Factors monitored include blood pressure, pulse, temperature, total protein, protein electrophoresis, health history screening similar to that for whole blood, as well as an annual physical exam with a licensed physician or an approved physician substitute under the supervision of the physician. Donors are screened at each donation for viral diseases that can be transmitted by blood, sometimes by multiple methods. For example, donations are tested for HIV by ELISA, which shows if they have been exposed to the disease, as well as by nucleic acid methods to rule out recent infections that the ELISA test might miss and are also screened for hepatitis B and hepatitis C. Industry standards require at least two sets of negative test results before the collected plasma is used for injectable products. The plasma is also treated in processing multiple times to inactivate any virus that was undetected during the screening process.
In a few countries, plasma is donated by unpaid volunteers. In others, including the United States, Austria, Germany and some Canadian facilities plasma donors are paid for their donations. Standards for donating plasma are set by national regulatory agencies such as the U.S. Food and Drug Administration, the European Union, and by a professional organization, the Plasma Protein Therapeutics Association, which audits and accredits collection facilities. A National Donor Deferral Registry is also maintained by the PPTA for use in keeping donors with prior positive viral antibody test results from donating at any facility.
Almost all plasmapheresis in the US is performed by automated methods. In some cases, automated plasmapheresis is used to collect plasma products like fresh frozen plasma for direct transfusion purposes, often at the same time as plateletpheresis. These procedures are performed at facilities such as community blood centers.
Since returning red cells causes the body to replace plasma more rapidly, a donor can provide up to a liter of plasma at a time and can donate with only a few days between donations, unlike the 56-day deferral for blood donation. The amount allowed in a donation varies vastly from country to country, but generally does not exceed two donations, each as much as a liter, per seven-day period. If a significant amount of red blood cells cannot be returned, the donor may not donate for 56 days, just as if they had donated a unit of blood. Depending on the collection system and the operation, the removed plasma may be replaced by saline. The body typically replaces the collected volume within 24 hours, and donors typically donate up to twice a week, though this varies by country.
The collected plasma is promptly frozen at lower than -20 °C and is typically shipped to a processing facility for fractionation. This process separates the collected plasma into specific components, such as albumin and immunoglobulins, most of which are made into medications for human use. Sometimes the plasma is thawed and transfused as Fresh Frozen Plasma, much like the plasma from a normal blood donation.
; Manual method
; Automated method
; Antibodies