Physical organic chemistry
Physical organic chemistry, a term coined by Louis Hammett in 1940, refers to a discipline of organic chemistry that focuses on the relationship between chemical structures and reactivity, in particular, applying experimental tools of physical chemistry to the study of organic molecules. Specific focal points of study include the rates of organic reactions, the relative chemical stabilities of the starting materials, reactive intermediates, transition states, and products of chemical reactions, and non-covalent aspects of solvation and molecular interactions that influence chemical reactivity. Such studies provide theoretical and practical frameworks to understand how changes in structure in solution or solid-state contexts impact reaction mechanism and rate for each organic reaction of interest.
Application
Physical organic chemists use theoretical and experimental approaches work to understand these foundational problems in organic chemistry, including classical and statistical thermodynamic calculations, quantum mechanical theory and computational chemistry, as well as experimental spectroscopy, spectrometry, and crystallography approaches. The field therefore has applications to a wide variety of more specialized fields, including electro- and photochemistry, polymer and supramolecular chemistry, and bioorganic chemistry, enzymology, and chemical biology, as well as to commercial enterprises involving process chemistry, chemical engineering, materials science and nanotechnology, and pharmacology in drug discovery by design.Scope
Physical organic chemistry is the study of the relationship between structure and reactivity of organic molecules. More specifically, physical organic chemistry applies the experimental tools of physical chemistry to the study of the structure of organic molecules and provides a theoretical framework that interprets how structure influences both mechanisms and rates of organic reactions. It can be thought of as a subfield that bridges organic chemistry with physical chemistry.Physical organic chemists use both experimental and theoretical disciplines such as spectroscopy, spectrometry, crystallography, computational chemistry, and quantum theory to study both the rates of organic reactions and the relative chemical stability of the starting materials, transition states, and products. Chemists in this field work to understand the physical underpinnings of modern organic chemistry, and therefore physical organic chemistry has applications in specialized areas including polymer chemistry, supramolecular chemistry, electrochemistry, and photochemistry.
History
The term physical organic chemistry was itself coined by Louis Hammett in 1940 when he used the phrase as a title for his textbook.Chemical structure and thermodynamics
Thermochemistry
Organic chemists use the tools of thermodynamics to study the bonding, stability, and energetics of chemical systems. This includes experiments to measure or determine the enthalpy, entropy, and Gibbs' free energy of a reaction, transformation, or isomerization. Chemists may use various chemical and mathematical analyses, such as a Van 't Hoff plot, to calculate these values.Empirical constants such as bond dissociation energy, standard heat of formation, and heat of combustion are used to predict the stability of molecules and the change in enthalpy through the course of the reactions. For complex molecules, a ΔfH° value may not be available but can be estimated using molecular fragments with known heats of formation. This type of analysis is often referred to as Benson group increment theory, after chemist Sidney Benson who spent a career developing the concept.
The thermochemistry of reactive intermediates—carbocations, carbanions, and radicals—is also of interest to physical organic chemists. Group increment data are available for radical systems. Carbocation and carbanion stabilities can be assessed using hydride ion affinities and pKa values, respectively.
Conformational analysis
One of the primary methods for evaluating chemical stability and energetics is conformational analysis. Physical organic chemists use conformational analysis to evaluate the various types of strain present in a molecule to predict reaction products. Strain can be found in both acyclic and cyclic molecules, manifesting itself in diverse systems as torsional strain, allylic strain, ring strain, and syn-pentane strain. A-values provide a quantitative basis for predicting the conformation of a substituted cyclohexane, an important class of cyclic organic compounds whose reactivity is strongly guided by conformational effects. The A-value is the difference in the Gibbs' free energy between the axial and equatorial forms of substituted cyclohexane, and by adding together the A-values of various substituents it is possible to quantitatively predict the preferred conformation of a cyclohexane derivative.In addition to molecular stability, conformational analysis is used to predict reaction products. One commonly cited example of the use of conformational analysis is a bi-molecular elimination reaction. This reaction proceeds most readily when the nucleophile attacks the species that is antiperiplanar to the leaving group. A molecular orbital analysis of this phenomenon suggest that this conformation provides the best overlap between the electrons in the R-H σ bonding orbital that is undergoing nucleophilic attack and the empty σ* antibonding orbital of the R-X bond that is being broken. By exploiting this effect, conformational analysis can be used to design molecules that possess enhanced reactivity.
The physical processes which give rise to bond rotation barriers are complex, and these barriers have been extensively studied through experimental and theoretical methods. A number of recent articles have investigated the predominance of the steric, electrostatic, and hyperconjugative contributions to rotational barriers in ethane, butane, and more substituted molecules.
Non-covalent interactions
Chemists use the study of intramolecular and intermolecular non-covalent bonding/interactions in molecules to evaluate reactivity. Such interactions include, but are not limited to, hydrogen bonding, electrostatic interactions between charged molecules, dipole-dipole interactions, polar-π and cation-π interactions, π-stacking, donor-acceptor chemistry, and halogen bonding. In addition, the hydrophobic effect—the association of organic compounds in water—is an electrostatic, non-covalent interaction of interest to chemists. The precise physical origin of the hydrophobic effect originates from many complex interactions, but it is believed to be the most important component of biomolecular recognition in water. For example, researchers elucidated the structural basis for folic acid recognition by folate acid receptor proteins. The strong interaction between folic acid and folate receptor was attributed to both hydrogen bonds and hydrophobic interactions. The study of non-covalent interactions is also used to study binding and cooperativity in supramolecular assemblies and macrocyclic compounds such as crown ethers and cryptands, which can act as hosts to guest molecules.Acid–base chemistry
The properties of acids and bases are relevant to physical organic chemistry. Organic chemists are primarily concerned with Brønsted–Lowry acids/bases as proton donors/acceptors and Lewis acids/bases as electron acceptors/donors in organic reactions. Chemists use a series of factors developed from physical chemistry -- electronegativity/Induction, bond strengths, resonance, hybridization, aromaticity, and solvation—to predict relative acidities and basicities.The hard/soft acid/base principle is utilized to predict molecular interactions and reaction direction. In general, interactions between molecules of the same type are preferred. That is, hard acids will associate with hard bases, and soft acids with soft bases. The concept of hard acids and bases is often exploited in the synthesis of inorganic coordination complexes.