Philadelphia Water Department
The Philadelphia Water Department is the public water utility for the City of Philadelphia. PWD provides integrated potable water, wastewater, and stormwater services for Philadelphia and some communities in Bucks, Delaware and Montgomery counties. PWD is a municipal agency of the City of Philadelphia, and is seated in rented space at the Jefferson Tower in the Market East area of Center City, Philadelphia.
The primary mission of the department is the planning, operation and maintenance of both the physical infrastructure and the organized personnel needed to provide high quality drinking water, and to provide an adequate and reliable water supply for all domestic, commercial, and industrial requirements, and to manage wastewater and stormwater to protect and improve the quality of the region's watersheds, especially the Delaware River and the Schuylkill River.
The department is responsible for delivering safe drinking water to more than 1.7 million people in Philadelphia and Lower Bucks County. It is also committed to protecting and bolstering the health and vitality of the region's waterways. It faces many challenges in meeting the goal of providing safe drinking water, including agricultural, mining, and drilling runoff, chemicals and fuel spilled on streets, radionuclides, and the treated wastewater from the region's inhabitants.
History
The Philadelphia Water Department has been providing water to citizens since 1801, when, in the aftermath of a series of devastating yellow fever epidemics that killed thousands of people, the City decided a source of water was needed to cleanse the streets, fight fires, and perform household chores. While a number of private water companies had been established in other cities by that time, Philadelphia, with its city-owned and financed system, was one of the first in the U.S. to take on water supply as a municipal responsibility. Water was piped throughout the city, with paying customers served by direct lines to businesses and houses, and free water provided through public hydrants to anyone with a bucket to carry it in.The city's first system, with a steam engine at Centre Square and a second engine at the foot of Chestnut Street, drew water from the Schuylkill River. This system was plagued by high costs and technical problems, mostly related to the unreliability of the steam engines. In 1815, a new works at Fairmount was opened. Steam engines pumped water up to reservoirs on top of the hill.
While the steam engines at the Fairmount Water Works were better-designed than those at Centre Square, they were still balky and costly to run, leading to a plan to use water power to pump water into the reservoirs. This was accomplished in 1821, when a dam was completed across the Schuylkill River at Fairmount. The dam diverted water to run water wheels to operate the pumps, resulting in a vast improvement in cost and efficiency over steam powered pumping, which was abandoned at Fairmount. Water-powered Jonval turbines were added to Fairmount between 1851 and 1871. By this time, several other pumping steam-powered stations were operating to serve various parts of the city, drawing water from the Schuylkill River, Delaware River, Monoshone Creek and springs.
After the works at Fairmount were decommissioned in 1911, the buildings were retrofitted to house first an aquarium, and later a swimming pool. The restored complex, listed on the National Historic Register, now houses the educational and historical exhibits of the Fairmount Water Works Interpretive Center of the Philadelphia Water Department. The entire site, which also includes a restaurant and a restored historic landscape, is now part of Fairmount Park, and is administered by Philadelphia Parks & Recreation.
The city and state passed various anti-pollution laws- beginning in 1828, and the city's purchase of land that became Fairmount Park was an attempt to protect the Schuylkill River watershed from pollution while creating a grand new park. Unfortunately, these and other attempts to prevent pollution of the rivers failed, and both the Delaware and Schuylkill became badly polluted. Combined sewers, carrying stormwater and sewage in the same pipe, emptied directly into the city's rivers and streams, and dumping of industrial wastes also went largely unchecked. As a result, waterborne diseases, in particular typhoid fever, killed tens of thousands and sickened hundreds of thousands in the period between the Civil War and the beginning of the 20th century.
To alleviate this public health disaster, five slow sand water filtration plants were constructed by the city between 1901 and 1912. Filtration, combined with chlorination of the water supply beginning in 1914, resulted in a dramatic decrease in the incidence of water-borne diseases. The Torresdale Filter Plant and the Lardner's Point Pumping Station, which delivered filtered water into the city's vast network of distribution pipes, were both the largest of their kinds in the world at that time.
Between the 1920s and 1940s, the coal-powered steam engines that pumped water in all plants except Fairmount were replaced by electric pumps. Between the late 1940s and the early 1960s, slow sand filters were replaced by more efficient rapid sand filters.
Three water treatment plants – Baxter, in Northeast Philadelphia; Queen Lane, in East Falls; and Belmont, in West Philadelphia – now supply the city and surrounding suburban communities with water.
Watersheds
Philadelphia is in the Delaware River watershed. The entire watershed drains roughly 14,119 square miles between five states – Delaware, Maryland, New Jersey, New York, and Pennsylvania. The total area that this watershed makes up is approximately 0.4% of the United States’ land mass and is home to about 4.17 million people.The city can be divided into seven main subwatersheds, all of which drain to the Delaware River: the Schuylkill, Wissahickon, Darby-Cobbs, Pennypack, Tacony-Frankford, Poquessing and the Delaware Direct. The Delaware Direct subwatershed itself is very small although all the others drain into it.
Darby-Cobbs
The Darby-Cobbs watershed drains approximately 77 square miles, and about 66% of its surfaces are classified as impervious. This watershed encompasses parts of Chester, Delaware, Montgomery, and Philadelphia counties. In specific, it is made up of the following municipalities: Easttown, Tredyffrin, Aldan, Clifton Heights, Collingdale, Colwyn, Darby, East Lansdowne, Folcroft, Glenolden, Haverford, Lansdowne, Marple, Millbourne, Morton, Newtown, Norwood, Prospect Park, Radnor, Ridley Park, Ridley, Rutledge, Sharon Hill, Springfield, Tinicum, Upper Darby, Yeadon, Lower Merion, and Narberth.Delaware Direct
The contribution of direct drainage to the Delaware River from Philadelphia itself is very small, spanning only about 40 square miles of the city. The area directly considered the Delaware watershed is estimated to be 72% impervious surfaces within Philadelphia. The residences along the Delaware River drain into this watershed.Pennypack
The Pennypack Watershed drains about 56 miles of Philadelphia and 33% of its surface area is impervious. Areas that belong to this water shed include parts of Montgomery, Philadelphia and Bucks counties, and segments of 12 different municipalities, including Abington, Bryn Athyn, Hatboro, Horsham, Lower Moreland, Rockledge, Upper Dublin, Upper Moreland, Upper Southampton, and Warminster.Poquessing
This watershed drains about 22 square miles and 38% of its surface area is impervious. It includes areas of Philadelphia, Bucks, and Montgomery counties, and 4 additional municipalities called Lower Moreland, Bensalem, Lower Southampton, and Upper Southampton.Schuylkill
This watershed is about 2,000 square miles and is 10% impervious. The Schuylkill watershed includes areas of 11 counties such as the Schuylkill, Berks, Montgomery, Chester, Philadelphia, Carbon, Lehigh, Lebanon, Lancaster, Bucks, and the Delaware.Tookany/Tacony-Frankford
This watershed drains about 33 square miles and has about 48% impervious surface areas. Its reach includes parts of Philadelphia and Montgomery counties, as well as five municipalities: Abington, Cheltenham, Jenkintown, Rockledge, and Springfield.Wissahickon
This watershed drains about 64 square miles and is 24% impervious. It includes areas of Montgomery and Philadelphia counties, as well as another 15 municipalities which include Abington, Ambler, Cheltenham, Horsham, Lansdale, Lower Gwynedd, Montgomery, North Wales, Springfield, Upper Dublin, Upper Gwynedd, Upper Moreland, Whitemarsh, Whitpain, and Worcester.Wastewater treatment and infrastructure
By 1899, approximately 800 miles of sanitary and storm sewers were in service in Philadelphia; today the system includes just under 3,000 miles of pipes. Most of these sewers emptied directly into the nearest river or stream, resulting in massive pollution of the waterways in and around the city. While water filtration made the polluted river water safe to drink, aquatic life in the rivers suffered greatly, and one swam in the rivers, or drank their raw water, at one's own peril.A small primary wastewater treatment plant went into operation along Pennypack Creek in 1912, treating the sewage from several city-owned institutions to prevent it from floating upstream to the intake pipe at the Torresdale Water Treatment Plant. In 1914 the city, under state mandate, developed a comprehensive plan for the treatment and collection of sewage, with three treatment plants and hundreds of miles of large intercepting sewers to keep pollution out of rivers and streams.
In 1923, the Northeast Sewage Treatment Plant opened along the Delaware River, but implementation of the rest of the comprehensive system was delayed by the onset of the Depression and World War II. Construction began again in the late 1940s, with the Southeast and Southwest plants opening by the mid-1950s. By the 1980s another massive investment upgraded all three plants to secondary treatment. The design-rated capacity of all three wastewater treatment plants is 522 million gallons a day, with a maximum capacity of 1.044 billion gallons a day. Besides the city's own wastes, the Philadelphia system also treats the sewage of several adjacent communities.