Microchip implant (animal)


A microchip implant is an identifying integrated circuit placed under the skin of an animal. The chip, about the size of a large grain of rice, uses passive radio-frequency identification technology, and is also known as a PIT tag. Standard pet microchips are typically 11–13 mm long and 2 mm in diameter.
Externally attached microchips such as RFID ear tags are commonly used to identify farm and ranch animals, with the exception of horses. Some external microchips can be read with the same scanner used with implanted chips.
Animal shelters, animal control officers and veterinarians routinely look for microchips to return lost pets quickly to their owners, avoiding expenses for housing, food, medical care, outplacing and euthanasia. Many shelters place chips in all outplaced animals.
Microchips are also used by kennels, breeders, brokers, trainers, registries, rescue groups, humane societies, clinics, farms, stables, animal clubs and associations, researchers, and pet stores.

Usage

Since their first use in the mid-1980s, microchips have allowed innovative investigations into numerous biological traits of animals. The tiny, coded markers implanted into individual animals allow assessment of growth rates, movement patterns, and survival patterns for many species in a manner more reliable than traditional approaches of externally marking animals for identification. Microchips have also been used to confirm the identity of pets and protected species that have been illegally removed from the wild.
Microchips can be implanted by a veterinarian or at a shelter. After checking that the animal does not already have a chip, the vet or technician injects the chip with a syringe and records the chip's unique ID. No anesthetic is required, as it is a simple procedure and causes little discomfort; the pain is minimal and short-lived. In dogs and cats, chips are usually inserted below the skin at the back of the neck between the shoulder blades on the dorsal midline. According to one reference, continental European pets get the implant in the left side of the neck. The chip can often be felt under the skin. Thin layers of connective tissue form around the implant and hold it in place.
Horses are microchipped on the left side of the neck, halfway between the poll and withers and approximately one inch below the midline of the mane, into the nuchal ligament.
Birds are implanted in their breast muscles. Proper restraint is necessary so the operation requires either two people or general anesthesia. Studies on horses show swelling and increased sensitivity take approximately three days to resolve. Humans report swelling and bruising at the time of implant, two to four weeks for scar tissue to form and itching and pinching sensations for up to two years. A test scan ensures correct operation.
Some shelters and vets designate themselves as the primary contact to remain informed about possible problems with the animals they place. The form is sent to a registry, who may be the chip manufacturer, distributor or an independent entity such as a pet recovery service. Some countries have a single official national database. For a fee, the registry typically provides 24-hour, toll-free telephone service for the life of the pet. Some veterinarians leave registration to the owner, usually done online, but a chip without current contact information is essentially useless.
The owner receives a registration certificate with the chip ID and recovery service contact information. The information can also be imprinted on a collar tag worn by the animal. Like an automobile title, the certificate serves as proof of ownership and is transferred with the animal when it is sold or traded; an animal without a certificate could be stolen. There are some privacy concerns regarding the use of microchips.
Authorities and shelters examine strays for chips, providing one of the aforementioned recovery services with the ID number, description and location so that the recovery service may notify the owner, a contact, or veterinarians in the area. If the pet is wearing the collar tag, the finder does not need a chip reader to contact the registry because a rescuer can simply read the ID number and phone number to provide to the registry. An owner can also report a missing pet to the recovery service, as vets look for chips in new animals and check with the recovery service to see if it has been reported lost or stolen.
Many veterinarians scan an animal's chip on every visit to verify correct operation. Some use the chip ID as their database index and print it on receipts, test results, vaccination certifications and other records.
Some veterinary tests and procedures require positive identification of the animal, and a microchip may be acceptable for this purpose as an alternative to a tattoo.
Some pet doors can be programmed to be activated by the microchips of specific animals, allowing only certain animals to use the door.

Advantages of data collection

Pets

There are multiple reasons for the use of the microchips on pets as a documentation device, which are also advantages of microchips regarding information collection. The three major reasons for microchip implantation are, recording, domestication and showing proof of ownership. For example, with a feline microchip, delocalization shows that a registered cat is one that society is aware of and the cat has a position in the social order of animals. Recording shows that the microchip helps authorized people review and monitor cats in a certain region by referring to the database; thus the registry and the implanted microchips transform cats into social objects.

Livestock

Due to the advantages of microchips, there are many concrete applications of RFID in the agri-food sector covering the majority of usual foods, such as all kinds of meats as well as various vegetables, fruits. The feature of RFID, namely its traceability, makes it possible for the increased security and confidence of customers. As one of the most popular livestock around the world, the health condition of pigs is vital to farmer's income and inevitably influence customers' health. It is challenging to monitor the pigs' health condition individually by using traditional approaches. It is common for diseases to spread from a single pig to nearly all the pigs living in the same pigsty. By adopting the technology of microchips to measure the drinking behavior of individual pigs housed in a group, it is possible to identify a pig's health and productivity state. This kind of behavior is a good indicator of a pig's overall health. Compared to traditional visual observations to determine the pig's health state, RFID-based monitoring of pig drinking behavior is a feasible and more efficient option.

Wildlife

Using microchips in wild animals in biology began with fisheries' studies to determine the efficacy of this method for measuring fish movement. Later, studies that use microchips to track wild animals expanded over the years, including researches on mammals, reptiles, birds, and amphibians. Compared with previous marking and tagging techniques used to identify wild animals before the advent of microchips, such as ear tags and color-coded leg bands, microchips are visually less obvious and less likely to be detected by prey and predators. Due to the fact that traditional identifications are on the exterior of the animal, tags can be lost, scars can heal and tattoos can fade.
Other useful and significant information can be collected by microchips. Chipped wild animals that are recaptured can provide information on growth rate and change of location, as well as other valuable data such as age structure, sex ratios, and longevity of individuals in the wild. Other researches on small mammals like rats and mice also adopt this technology to determine body temperature of terminally ill animals. As microchips are internal, permanent, durable under harsh environments, and have little influence on animals, more scholars have employed microchip implantation to collect useful data on wildlife researches.

Components of a microchip

A microchip implant is a passive RFID device. Lacking an internal power source, it remains inert until it is powered by the scanner or another power source. While the chip itself only interacts with limited frequencies, the device also has an antenna that is optimized for a specific frequency, but is not selective. It may receive, generate current with, and reradiate stray electromagnetic waves. The radio-waves emitted by the scanner activate the chip, making the chip transmit the identification number to the scanner, and the scanner displays the number on screen. The microchip is enclosed in a biocompatible glass cylinder and includes an identifying integrated circuit placed under the skin of an animal. Relevant standards for the chips are ISO 11784 and ISO 11785.
Most implants contain three elements: a 'chip' or integrated circuit, a coil inductor, possibly with a ferrite core, and a capacitor. The chip contains unique identification data and electronic circuits to encode that information. The coil acts as the secondary winding of a transformer, receiving power inductively coupled to it from the scanner. The coil and capacitor together form a resonant LC circuit tuned to the frequency of the scanner's oscillating magnetic field to produce power for the chip. The chip then transmits its data back through the coil to the scanner. The way the chip communicates with the scanner is a method called backscatter. It becomes part of the electromagnetic field and modulates it in a manner that communicates the ID number to the scanner.
These components are encased in biocompatible soda lime or borosilicate glass and hermetically sealed. Leaded glass should not be used for pet microchips and consumers should only accept microchips from reliable sources. The glass is also sometimes coated with polymers. Parylene C has become a common coating. Plastic pet microchips have been registered in the international registry since 2012 under Datamars manufacturer code 981 and are being implanted in pets. The patent suggests it is a silicone filled polyester sheath, but the manufacturer does not disclose the exact composition.