Proxy (climate)


In the study of past climates, climate proxies are preserved physical characteristics of the past that stand in for direct meteorological measurements and enable scientists to reconstruct the climatic conditions over a longer fraction of the Earth's history. Reliable global records of climate only began in the 1880s, and proxies provide the only means for scientists to determine climatic patterns before record-keeping began.
A large number of climate proxies have been studied from a variety of geologic contexts. Examples of proxies include stable isotope measurements from ice cores, growth rates in tree rings, species composition of sub-fossil pollen in lake sediment or foraminifera in ocean sediments, temperature profiles of boreholes, and stable isotopes and mineralogy of corals and carbonate speleothems. In each case, the proxy indicator has been influenced by a particular seasonal climate parameter at the time in which they were laid down or grew. Interpretation of climate proxies requires a range of ancillary studies, including calibration of the sensitivity of the proxy to climate and cross-verification among proxy indicators.
Proxies can be combined to produce temperature reconstructions longer than the instrumental temperature record and can inform discussions of global warming and climate history. The geographic distribution of proxy records, just like the instrumental record, is not at all uniform, with more records in the northern hemisphere.

Proxies

In science, it is sometimes necessary to study a variable which cannot be measured directly. This can be done by "proxy methods," in which a variable which correlates with the variable of interest is measured, and then used to infer the value of the variable of interest. Proxy methods are of particular use in the study of the past climate, beyond times when direct measurements of temperatures are available.
Most proxy records have to be calibrated against independent temperature measurements, or against a more directly calibrated proxy, during their period of overlap to estimate the relationship between temperature and the proxy. The longer history of the proxy is then used to reconstruct temperature from earlier periods.

Ice cores

Drilling

are cylindrical samples from within ice sheets in the Greenland, Antarctic, and North American regions. First attempts of extraction occurred in 1956 as part of the International Geophysical Year. As original means of extraction, the U.S. Army's Cold Regions Research and Engineering Laboratory used an -long modified electrodrill in 1968 at Camp Century, Greenland, and Byrd Station, Antarctica. Their machinery could drill through of ice in 40–50 minutes. From 1300 to in depth, core samples were in diameter and 10 to long. Deeper samples of 15 to long were not uncommon. Every subsequent drilling team improves their method with each new effort.

Proxy

The ratio between the 16O and 18O water molecule isotopologues in an ice core helps determine past temperatures and snow accumulations. The heavier isotope condenses more readily as temperatures decrease and falls more easily as precipitation, while the lighter isotope needs colder conditions to precipitate. The farther north one needs to go to find elevated levels of the 18O isotopologue, the warmer the period.
In addition to oxygen isotopes, water contains hydrogen isotopes – 1H and 2H, usually referred to as H and D – that are also used for temperature proxies. Normally, ice cores from Greenland are analyzed for δ18O and those from Antarctica for δ-deuterium. Those cores that analyze for both show a lack of agreement.
Air bubbles in the ice, which contain trapped greenhouse gases such as carbon dioxide and methane, are also helpful in determining past climate changes.
From 1989 to 1992, the European Greenland Ice Core Drilling Project drilled in central Greenland at coordinates 72° 35' N, 37° 38' W. The ices in that core were 3840 years old at a depth of 770 m, 40,000 years old at 2521 m, and 200,000 years old or more at 3029 m bedrock. Ice cores in Antarctica can reveal the climate records for the past 650,000 years.
Location maps and a complete list of U.S. ice core drilling sites can be found on the website for the National Ice Core Laboratory.

Tree rings

Dendroclimatology is the science of determining past climates from trees, primarily from properties of the annual tree rings. Tree rings are wider when conditions favor growth, narrower when times are difficult. Two primary factors are temperature and humidity / water availability. Other properties of the annual rings, such as maximum latewood density have been shown to be better proxies than simple ring width. Using tree rings, scientists have estimated many local climates for hundreds to thousands of years previous. By combining multiple tree-ring studies, scientists have estimated past regional and global climates.

Fossil leaves

Paleoclimatologists often use leaf teeth to reconstruct mean annual temperature in past climates, and they use leaf size as a proxy for mean annual precipitation. In the case of mean annual precipitation reconstructions, some researchers believe taphonomic processes cause smaller leaves to be overrepresented in the fossil record, which can bias reconstructions. However, recent research suggests that the leaf fossil record may not be significantly biased toward small leaves. New approaches retrieve data such as content of past atmospheres from fossil leaf stomata and isotope composition, measuring cellular CO2 concentrations. A 2014 study was able to use the carbon-13 isotope ratios to estimate the CO2 amounts of the past 400 million years, the findings hint at a higher climate sensitivity to CO2 concentrations.

Boreholes

temperatures are used as temperature proxies. Since heat transfer through the ground is slow, temperature measurements at a series of different depths down the borehole, adjusted for the effect of rising heat from inside the Earth, can be "inverted" to produce a non-unique series of surface temperature values. The solution is "non-unique" because there are multiple possible surface temperature reconstructions that can produce the same borehole temperature profile. In addition, due to physical limitations, the reconstructions are inevitably "smeared", and become more smeared further back in time. When reconstructing temperatures around 1500 AD, boreholes have a temporal resolution of a few centuries. At the start of the 20th century, their resolution is a few decades; hence they do not provide a useful check on the instrumental temperature record. However, they are broadly comparable. These confirmations have given paleoclimatologists the confidence that they can measure the temperature of 500 years ago. This is concluded by a depth scale of about to measure the temperatures from 100 years ago and to measure the temperatures from 1,000 years ago.
Boreholes have a great advantage over many other proxies in that no calibration is required: they are actual temperatures. However, they record surface temperature not the near-surface temperature used for most "surface" weather observations. These can differ substantially under extreme conditions or when there is surface snow. In practice the effect on borehole temperature is believed to be generally small. A second source of error is contamination of the well by groundwater may affect the temperatures, since the water "carries" more modern temperatures with it. This effect is believed to be generally small, and more applicable at very humid sites. It does not apply in ice cores where the site remains frozen all year.
More than 600 boreholes, on all continents, have been used as proxies for reconstructing surface temperatures. The highest concentration of boreholes exist in North America and Europe. Their depths of drilling typically range from 200 to greater than 1,000 meters into the crust of the Earth or ice sheet.
A small number of boreholes have been drilled in the ice sheets; the purity of the ice there permits longer reconstructions. Central Greenland borehole temperatures show "a warming over the last 150 years of approximately 1°C ± 0.2°C preceded by a few centuries of cool conditions. Preceding this was a warm period centered around A.D. 1000, which was warmer than the late 20th century by approximately 1°C." A borehole in the Antarctica icecap shows that the "temperature at A.D. 1 approximately 1°C warmer than the late 20th century".
Borehole temperatures in Greenland were responsible for an important revision to the isotopic temperature reconstruction, revealing that the former assumption that "spatial slope equals temporal slope" was incorrect.

Corals

rings, or bands, also share paleoclimatological information, similarly to tree rings. In 2002, a report was published on the findings of Drs. Lisa Greer and Peter Swart, associates of University of Miami at the time, in regard to stable oxygen isotopes in the calcium carbonate of coral. Cooler temperatures tend to cause coral to use heavier isotopes in its structure, while warmer temperatures result in more normal oxygen isotopes being built into the coral structure. Denser water salinity also tends to contain the heavier isotope. Greer's coral sample from the Atlantic Ocean was taken in 1994 and dated back to 1935. Greer recalls her conclusions, "When we look at the averaged annual data from 1935 to about 1994, we see it has the shape of a sine wave. It is periodic and has a significant pattern of oxygen isotope composition that has a peak at about every twelve to fifteen years." Surface water temperatures have coincided by also peaking every twelve and a half years. However, since recording this temperature has only been practiced for the last fifty years, correlation between recorded water temperature and coral structure can only be drawn so far back.