Opto-isolator


An opto-isolator is an electronic component that transfers electrical signals between two isolated circuits by using light. Opto-isolators prevent high voltages from affecting the system receiving the signal. Commercially available opto-isolators withstand input-to-output voltages up to 10 kV and voltage transients with speeds up to 25 kV/μs.
A common type of opto-isolator consists of an LED and a phototransistor in the same opaque package. Other types of source-sensor combinations include LED-photodiode, LED-LASCR, and lamp-photoresistor pairs. Usually opto-isolators transfer digital signals and can act as an electronic switch, but some techniques allow them to be used with analog signals.

History

The value of optically coupling a solid state light emitter to a semiconductor detector for the purpose of electrical isolation was recognized in 1963 by Akmenkalns, et al.. Photoresistor-based opto-isolators were introduced in 1968. They are the slowest, but also the most linear isolators and still retain a niche market in the audio and music industries. Commercialization of LED technology in 1968–1970 caused a boom in optoelectronics, and by the end of the 1970s the industry developed all principal types of opto-isolators. The majority of opto-isolators on the market use bipolar silicon phototransistor sensors. They attain medium data transfer speed, sufficient for applications like electroencephalography. The fastest opto-isolators use PIN diodes in photoconductive mode.

Operation

An opto-isolator contains a source of light, almost always a near infrared light-emitting diode, that converts electrical input signal into light, a closed optical channel, and a photosensor, which detects incoming light and either generates electric energy directly, or modulates electric current flowing from an external power supply. The sensor can be a photoresistor, a photodiode, a phototransistor, a silicon-controlled rectifier or a triac. Since LEDs can sense light in addition to emitting it, construction of symmetrical, bidirectional opto-isolators is possible. An optocoupled solid-state relay contains a photodiode opto-isolator which drives a power switch, usually a complementary pair of MOSFETs. A slotted optical switch contains a source of light and a sensor, but its optical channel is open, allowing modulation of light by external objects obstructing the path of light or reflecting light into the sensor.

Electric isolation

Electronic equipment and signal and power transmission lines can be subjected to voltage surges induced by lightning, electrostatic discharge, radio frequency transmissions, switching pulses and perturbations in power supply. Remote lightning strikes can induce surges up to 10 kV, one thousand times more than the voltage limits of many electronic components. A circuit can also incorporate high voltages by design, in which case it needs safe, reliable means of interfacing its high-voltage components with low-voltage ones.
The main function of an opto-isolator is to block such high voltages and voltage transients, so that a surge in one part of the system will not disrupt or destroy the other parts. Historically, this function was delegated to isolation transformers, which use inductive coupling between galvanically isolated input and output sides. Transformers and opto-isolators are the only two classes of electronic devices that offer reinforced protection — they protect both the equipment and the human user operating this equipment. They contain a single physical isolation barrier, but provide protection equivalent to double isolation. Safety, testing and approval of opto-couplers are regulated by national and international standards: IEC 60747-5-2, EN 60747-5-2, UL 1577, CSA Component Acceptance Notice #5, etc. Opto-isolator specifications published by manufacturers always follow at least one of these regulatory frameworks.
An opto-isolator connects input and output sides with a beam of light modulated by input current. It transforms useful input signal into light, sends it across the dielectric channel, captures light on the output side and transforms it back into electric signal. Unlike transformers, which pass energy in both directions with very low losses, opto-isolators are unidirectional and they cannot transmit power. Typical opto-isolators can only modulate the flow of energy already present on the output side. Unlike transformers, opto-isolators can pass DC or slow-moving signals and do not require matching impedances between input and output sides. Both transformers and opto-isolators are effective in breaking ground loops, common in industrial and stage equipment, caused by high or noisy return currents in ground wires.
The physical layout of an opto-isolator depends primarily on the desired isolation voltage. Devices rated for less than a few kV have planar construction. The sensor die is mounted directly on the lead frame of its package. The sensor is covered with a sheet of glass or clear plastic, which is topped with the LED die. The LED beam fires downward. To minimize losses of light, the useful absorption spectrum of the sensor must match the output spectrum of the LED, which almost invariably lies in the near infrared. The optical channel is made as thin as possible for a desired breakdown voltage. For example, to be rated for short-term voltages of 3.75 kV and transients of 1 kV/μs, the clear polyimide sheet in the Avago ASSR-300 series is only 0.08 mm thick. Breakdown voltages of planar assemblies depend on the thickness of the transparent sheet and the configuration of bonding wires that connect the dies with external pins. Real in-circuit isolation voltage is further reduced by creepage over the PCB and the surface of the package. Safe design rules require a minimal clearance of 25 mm/kV for bare metal conductors or 8.3 mm/kV for coated conductors.
Opto-isolators rated for 2.5 to 6 kV employ a different layout called silicone dome. Here, the LED and sensor dies are placed on the opposite sides of the package; the LED fires into the sensor horizontally. The LED, the sensor and the gap between them are encapsulated in a blob, or dome, of transparent silicone. The dome acts as a reflector, retaining all stray light and reflecting it onto the surface of the sensor, minimizing losses in a relatively long optical channel. In double mold designs the space between the silicone blob and the outer shell is filled with dark dielectric compound with a matched coefficient of thermal expansion.

Types of opto-isolators

Device typeSource of lightSensor typeSpeedCurrent transfer ratio
Resistive opto-isolator
Incandescent light bulbCdS or CdSe photoresistor Very low<100%
Resistive opto-isolator
Neon lampCdS or CdSe photoresistor Low<100%
Resistive opto-isolator
GaAs infrared LEDCdS or CdSe photoresistor Low<100%
Diode opto-isolatorGaAs infrared LEDSilicon photodiodeHighest0.1–0.2%
Transistor opto-isolatorGaAs infrared LEDBipolar silicon phototransistorMedium2–120%
Transistor opto-isolatorGaAs infrared LEDDarlington phototransistorMedium100–600%
Opto-isolated SCRGaAs infrared LEDSilicon-controlled rectifierLow to medium>100%
Opto-isolated triacGaAs infrared LEDTRIACLow to mediumVery high
Solid-state relayStack of GaAs infrared LEDsStack of photodiodes driving
a pair of MOSFETs or an IGBT
Low to highPractically unlimited

Resistive opto-isolators

The earliest opto-isolators, originally marketed as light cells, emerged in the 1960s. They employed miniature incandescent light bulbs as sources of light, and cadmium sulfide or cadmium selenide photoresistors as receivers. In applications where control linearity was not important, or where available current was too low for driving an incandescent bulb, it was replaced with a neon lamp. These devices were commonly named Vactrols, after a trademark of Vactec, Inc. The trademark has since been genericized, but the original Vactrols are still being manufactured by PerkinElmer.
The turn-on and turn-off lag of an incandescent bulb lies in hundreds of milliseconds range, which makes the bulb an effective low-pass filter and rectifier but limits the practical modulation frequency range to a few Hertz. With the introduction of light-emitting diodes in 1968–1970, the manufacturers replaced incandescent and neon lamps with LEDs and achieved response times of 5 milliseconds and modulation frequencies up to 250 Hz. The name Vactrol was carried over on LED-based devices which are, as of 2010, still produced in small quantities.
Photoresistors used in opto-isolators rely on bulk effects in a uniform film of semiconductor; there are no p-n junctions. Uniquely among photosensors, photoresistors are non-polar devices suited for either AC or DC circuits. Their resistance drops in reverse proportion to the intensity of incoming light, from virtually infinity to a residual floor that may be as low as less than a hundred Ohms. These properties made the original Vactrol a convenient and cheap automatic gain control and compressor for telephone networks. The photoresistors easily withstood voltages up to 400 volts, which made them ideal for driving vacuum fluorescent displays. Other industrial applications included photocopiers, industrial automation, professional light measurement instruments and auto-exposure meters. Most of these applications are now obsolete, but resistive opto-isolators retained a niche in audio, in particular guitar amplifier, markets.
American guitar and organ manufacturers of the 1960s embraced the resistive opto-isolator as a convenient and cheap tremolo modulator. Fender's early tremolo effects used two vacuum tubes; after 1964 one of these tubes was replaced by an optocoupler made of a LDR and a neon lamp. To date, Vactrols activated by pressing the stompbox pedal are ubiquitous in the music industry. Shortages of genuine PerkinElmer Vactrols forced the DIY guitar community to "roll their own" resistive opto-isolators. Guitarists to date prefer opto-isolated effects because their superior separation of audio and control grounds results in "inherently high quality of the sound". However, the distortion introduced by a photoresistor at line level signal is higher than that of a professional electrically coupled voltage-controlled amplifier. Performance is further compromised by slow fluctuations of resistance owing to light history, a memory effect inherent in cadmium compounds. Such fluctuations take hours to settle and can be only partially offset with feedback in the control circuit.