Nickel–metal hydride battery


A nickel–metal hydride battery is a type of rechargeable battery. The chemical reaction at the positive electrode is similar to that of the older nickel–cadmium cell, with both using nickel oxide hydroxide, NiO. However, the negative electrodes use a hydrogen-absorbing alloy instead of cadmium. NiMH batteries typically have two to three times the capacity of NiCd batteries of the same size, with significantly higher energy density, although only about half that of lithium-ion batteries. NiMH batteries have almost entirely replaced NiCd.
These batteries are typically used as a substitute for similarly shaped non-rechargeable alkaline and other primary batteries. They provide a cell voltage of about 1.2V while fresh alkaline cells provide 1.5V; however devices designed for alkaline batteries operate until cell voltage gradually drops to around 1.0V, while the voltage of a fully-charged NiMH cell drops more slowly, giving good endurance for a 1.0V end point. NiMH batteries are less prone to leaking corrosive electrolyte than primary batteries.

History

Work on NiMH batteries began at the Battelle-Geneva Research Center following the technology's invention in 1967. It was based on sintered Ti2Ni+TiNi+x alloys and NiOOH electrodes. Development was sponsored over nearly two decades by Daimler-Benz and by Volkswagen AG within Deutsche Automobilgesellschaft, now a subsidiary of Daimler AG. The batteries' specific energy reached 50 W·h/kg, specific power up to 1000 W/kg and a life of 500 charge cycles. Patent applications were filed in European countries, the United States, and Japan. The patents transferred to Daimler-Benz.
Interest grew in the 1970s with the commercialisation of the nickel–hydrogen battery for satellite applications. Hydride technology promised an alternative, less bulky way to store the hydrogen. Research carried out by Philips Laboratories and France's CNRS developed new high-energy hybrid alloys incorporating rare-earth metals for the negative electrode. However, these suffered from alloy instability in alkaline electrolyte and consequently insufficient cycle life. In 1987, Willems and Buschow demonstrated a successful battery based on this approach, which kept 84% of its charge capacity after 4000 charge-discharge cycles. More economically viable alloys using mischmetal instead of lanthanum were soon developed. Modern NiMH cells were based on this design. The first consumer-grade NiMH cells became commercially available in 1989.
In 1998, Stanford Ovshinsky at Ovonic Battery Co., which had been working on MH-NiOOH batteries since mid-1980, improved the Ti–Ni alloy structure and composition and patented its innovations.
In 2008, more than two million hybrid cars worldwide were manufactured with NiMH batteries.
In the European Union due to its Battery Directive, nickel–metal hydride batteries replaced Ni–Cd batteries for portable consumer use.
In Switzerland in 2009, approximately 60% of portable rechargeable batteries were NiMH. In 2000, almost half of all portable rechargeable batteries sold in Japan were NiMH, compared to 22% in 2010. This percentage has fallen over time due to the increase in manufacture of lithium-ion batteries.
In 2015 BASF produced a modified microstructure that helped make NiMH batteries more durable, in turn allowing changes to the cell design that saved considerable weight, allowing the specific energy to reach 140 watt-hours per kilogram.

Electrochemistry

The negative electrode reaction occurring in a NiMH cell is
On the positive electrode, nickel oxyhydroxide, NiO, is formed:
The reactions proceed left to right during charge and the opposite during discharge. The metal M in the negative electrode of a NiMH cell is an intermetallic compound. Many different compounds have been developed for this application, but those in current use fall into two classes. The most common is AB5, where A is a rare-earth mixture of lanthanum, cerium, neodymium, praseodymium, and B is nickel, cobalt, manganese, or aluminium. Some cells use higher-capacity negative electrode materials based on AB2 compounds, where A is titanium or vanadium, and B is zirconium or nickel, modified with chromium, cobalt, iron, or manganese.
NiMH cells have an alkaline electrolyte, usually potassium hydroxide. The positive electrode is nickel hydroxide, and the negative electrode is hydrogen in the form of an interstitial metal hydride. Hydrophilic polyolefin nonwovens are used for separation.

Charge

When fast-charging, it is advisable to charge the NiMH cells with a smart battery charger to avoid overcharging, which can damage cells.

Trickle charging

The simplest of the safe charging methods is with a fixed low current, with or without a timer. Most manufacturers claim that overcharging is safe at very low currents, below 0.1 C . The Panasonic NiMH charging manual warns that overcharging for long enough can damage a battery and suggests limiting the total charging time to 10–20 hours.
Duracell suggests that a trickle charge at C/300 can be used for batteries that must be kept in a fully charged state. Some chargers do this after the charge cycle, to offset natural self-discharge. A similar approach is suggested by Energizer, which indicates that self-catalysis can recombine gas formed at the electrodes for charge rates up to C/10. This leads to cell heating. The company recommends C/30 or C/40 for indefinite applications where long life is important. This is the approach taken in emergency lighting applications, where the design remains essentially the same as in older NiCd units, except for an increase in the trickle-charging resistor value.
Panasonic's handbook recommends that NiMH batteries on standby be charged by a lower duty cycle approach, where a pulse of a higher current is used whenever the battery's voltage drops below 1.3 V. This can extend battery life and use less energy.

Δ''V'' charging method

To prevent cell damage, fast chargers must terminate their charge cycle before overcharging occurs. One method is to monitor the change of voltage with time. When the battery is fully charged, the voltage across its terminals drops slightly. The charger can detect this and stop charging. This method is often used with nickel–cadmium cells, which display a large voltage drop at full charge. However, the voltage drop is much less pronounced for NiMH and can be non-existent at low charge rates, which can make the approach unreliable.
Another option is to monitor the change of voltage with respect to time and stop when this becomes zero, but this risks premature cutoffs. With this method, a much higher charging rate can be used than with a trickle charge, up to 1 C. At this charge rate, Panasonic recommends to terminate charging when the voltage drops 5–10 mV per cell from the peak voltage. Since this method measures the voltage across the battery, a constant-current charging circuit is used.

Δ''T'' charging method

The temperature-change method is similar in principle to the ΔV method. Because the charging voltage is nearly constant, constant-current charging delivers energy at a near-constant rate. When the cell is not fully charged, most of this energy is converted to chemical energy. However, when the cell reaches full charge, most of the charging energy is converted to heat. This increases the rate of change of battery temperature, which can be detected by a sensor such as a thermistor. Both Panasonic and Duracell suggest a maximal rate of temperature increase of 1 °C per minute. Using a temperature sensor allows an absolute temperature cutoff, which Duracell suggests at 60 °C. With both the ΔT and the ΔV charging methods, both manufacturers recommend a further period of trickle charging to follow the initial rapid charge.

Safety

A resettable fuse in series with the cell, particularly of the bimetallic strip type, increases safety. This fuse opens if either the current or the temperature gets too high.
Modern NiMH cells contain catalysts to handle gases produced by over-charging:
However, this only works with overcharging currents of up to 0.1 C. This reaction causes batteries to heat, ending the charging process.
A method for very rapid charging called in-cell charge control involves an internal pressure switch in the cell, which disconnects the charging current in the event of overpressure.
One inherent risk with NiMH chemistry is that overcharging causes hydrogen gas to form, potentially rupturing the cell. Therefore, cells have a vent to release the gas in the event of serious overcharging.
NiMH batteries are made of environmentally friendly materials. The batteries contain only mildly toxic substances and are recyclable.

Loss of capacity

from repeated partial discharge can occur, but is reversible with a few full discharge/charge cycles.

Discharge

A fully charged cell supplies an average 1.25 V/cell during discharge, declining to about 1.0–1.1 V/cell. Under a light load, the starting voltage of a freshly charged AA NiMH cell in good condition is about 1.4 volts.

Over-discharge

Complete discharge of multi-cell packs can cause reverse polarity in one or more cells, which can permanently damage them. This situation can occur in the common arrangement of four AA cells in series, where one cell completely discharges before the others due to small differences in capacity among the cells. When this happens, the good cells start to drive the discharged cell into reverse polarity. Some cameras, GPS receivers and PDAs detect the safe end-of-discharge voltage of the series cells and perform an auto-shutdown, but devices such as flashlights/torches and some toys do not.
Irreversible damage from polarity reversal is a particular danger, even when a low voltage-threshold cutout is employed, when the cells vary in temperature. This is because capacity significantly declines as the cells are cooled. This results in a lower voltage under load of the colder cells.