Sugar substitute
A sugar substitute or artificial sweetener is a food additive that provides a sweetness like that of sugar while containing significantly less food energy than sugar-based sweeteners, making it a zero-calorie or low-calorie sweetener. Artificial sweeteners may be derived from plant extracts or processed by chemical synthesis. Sugar substitute products are commercially available in various forms, such as small pills, powders and packets.
Common sugar substitutes include aspartame, monk fruit extract, saccharin, sucralose, stevia, acesulfame potassium and cyclamate. These sweeteners are a fundamental ingredient in diet drinks to sweeten them without adding calories. Additionally, sugar alcohols such as erythritol, xylitol and sorbitol are derived from sugars.
No links have been found between approved artificial sweeteners and cancer in humans. Reviews and dietetic professionals have concluded that moderate use of non-nutritive sweeteners as a relatively safe replacement for sugars that can help limit energy intake and assist with managing blood glucose and weight.
Types
Artificial sweeteners may be derived through manufacturing of plant extracts or processed by chemical synthesis.High-intensity sweeteners—one type of sugar substitute—are compounds with many times the sweetness of sucrose. As a result, much less sweetener is required and energy contribution is often negligible. The sensation of sweetness caused by these compounds is sometimes notably different from sucrose, so they are often used in complex mixtures that achieve the most intense sweet sensation.
In North America, common sugar substitutes include aspartame, monk fruit extract, saccharin, sucralose and stevia. Cyclamate is prohibited from being used as a sweetener within the United States, but is allowed in other parts of the world.
Sorbitol, xylitol and lactitol are examples of sugar alcohols. These are, in general, less sweet than sucrose but have similar bulk properties and can be used in a wide range of food products. Sometimes the sweetness profile is fine-tuned by mixing with high-intensity sweeteners.
Allulose
Allulose is a sweetener in the sugar family, with a chemical structure similar to fructose. It is naturally found in figs, maple syrup and some fruit. While it comes from the same family as other sugars, it does not substantially metabolize as sugar in the body. The FDA recognizes that allulose does not act like sugar, and as of 2019, no longer requires it to be listed with sugars on U.S. nutrition labels. Allulose is about 70% as sweet as sugar, which is why it is sometimes combined with high-intensity sweeteners to make sugar substitutes.Acesulfame potassium
Acesulfame potassium is 200 times sweeter than sucrose, as sweet as aspartame, about two-thirds as sweet as saccharin, and one-third as sweet as sucralose. Like saccharin, it has a slightly bitter aftertaste, especially at high concentrations. Kraft Foods has patented the use of sodium ferulate to mask acesulfame's aftertaste. Acesulfame potassium is often blended with other sweeteners, which give a more sucrose-like taste, whereby each sweetener masks the other's aftertaste and also exhibits a synergistic effect in which the blend is sweeter than its components.Unlike aspartame, acesulfame potassium is stable under heat, even under moderately acidic or basic conditions, allowing it to be used as a food additive in baking or in products that require a long shelf life. In carbonated drinks, it is almost always used in conjunction with another sweetener, such as aspartame or sucralose. It is also used as a sweetener in protein shakes and pharmaceutical products, especially chewable and liquid medications, where it can make the active ingredients more palatable.
Aspartame
Aspartame was discovered in 1965 by James M. Schlatter at the G.D. Searle company. He was working on an anti-ulcer drug and accidentally spilled some aspartame on his hand. When he licked his finger, he noticed that it had a sweet taste. Torunn Atteraas Garin oversaw the development of aspartame as an artificial sweetener. It is an odorless, white crystalline powder that is derived from the two amino acids aspartic acid and phenylalanine. It is about 180–200 times sweeter than sugar, and can be used as a tabletop sweetener or in frozen desserts, gelatins, beverages and chewing gum. When cooked or stored at high temperatures, aspartame breaks down into its constituent amino acids. This makes aspartame undesirable as a baking sweetener. It is more stable in somewhat acidic conditions, such as in soft drinks. Though it does not have a bitter aftertaste like saccharin, it may not taste exactly like sugar. When eaten, aspartame is metabolized into its original amino acids. Because it is so intensely sweet, relatively little of it is needed to sweeten a food product, and is thus useful for reducing the number of calories in a product.The safety of aspartame has been studied extensively since its discovery with research that includes animal studies, clinical and epidemiological research, and postmarketing surveillance, with aspartame being a rigorously tested food ingredient. Although aspartame has been subject to claims against its safety, multiple authoritative reviews have found it to be safe for consumption at typical levels used in food manufacturing. Aspartame has been deemed safe for human consumption by over 100 regulatory agencies in their respective countries, including the UK Food Standards Agency, the European Food Safety Authority and Health Canada.
Cyclamate
In the United States, the Food and Drug Administration banned the sale of cyclamate in 1969 after lab tests in rats involving a 10:1 mixture of cyclamate and saccharin caused bladder cancer. This information, however, is regarded as "weak" evidence of carcinogenic activity, and cyclamate remains in common use in many parts of the world, including Canada, the European Union and Russia.Mogrosides (monk fruit)
s, extracted from monk fruit, are recognized as safe for human consumption and are used in commercial products worldwide. As of 2017, it is not a permitted sweetener in the European Union, although it is allowed as a flavor at concentrations where it does not function as a sweetener. In 2017, a Chinese company requested a scientific review of its mogroside product by the European Food Safety Authority. It is the basis of McNeil Nutritionals' tabletop sweetener Nectresse in the United States and Norbu Sweetener in Australia.Saccharin
Apart from sugar of lead, saccharin was the first artificial sweetener and was originally synthesized in 1879 by Remsen and Fahlberg. Its sweet taste was discovered by accident. It had been created in an experiment with toluene derivatives. A process for the creation of saccharin from phthalic anhydride was developed in 1950, and, currently, saccharin is created by this process as well as the original process by which it was discovered. It is 300 to 500 times sweeter than sucrose and is often used to improve the taste of toothpastes, dietary foods and dietary beverages. The bitter aftertaste of saccharin is often minimized by blending it with other sweeteners.Fear about saccharin increased when a 1960 study showed that high levels of saccharin may cause bladder cancer in laboratory rats. In 1977, Canada banned saccharin as a result of the animal research. In the United States, the FDA considered banning saccharin in 1977, but Congress stepped in and placed a moratorium on such a ban. The moratorium required a warning label and also mandated further study of saccharin safety.
Subsequently, it was discovered that saccharin causes cancer in male rats by a mechanism not found in humans. At high doses, saccharin causes a precipitate to form in rat urine. This precipitate damages the cells lining the bladder and a tumor forms when the cells regenerate. According to the International Agency for Research on Cancer, part of the World Health Organization, "This mechanism is not relevant to humans because of critical interspecies differences in urine composition".
In 2001, the United States repealed the warning label requirement, while the threat of an FDA ban had already been lifted in 1991. Most other countries also permit saccharin, but restrict the levels of use, while other countries have outright banned it.
The EPA has removed saccharin and its salts from their list of hazardous constituents and commercial chemical products. In a 14 December 2010 release, the EPA stated that saccharin is no longer considered a potential hazard to human health.
Steviol glycosides (stevia)
Stevia is a natural non-caloric sweetener derived from the Stevia rebaudiana plant, and is manufactured as a sweetener. It is indigenous to South America, and has historically been used in Japanese food products, although it is now common internationally. In 1987, the FDA issued a ban on stevia because it had not been approved as a food additive, although it continued to be available as a dietary supplement. After being provided with sufficient scientific data demonstrating safety of using stevia as a manufactured sweetener, from companies such as Cargill and Coca-Cola, the FDA gave a "no objection" status as generally recognized as safe in December 2008 to Cargill for its stevia product, Truvia, for use of the refined stevia extracts as a blend of rebaudioside A and erythritol. In Australia, the brand Vitarium uses Natvia, a stevia sweetener, in a range of sugar-free children's milk mixes.In August 2019, the FDA placed an import alert on stevia leaves and crude extracts—which do not have GRAS status—and on foods or dietary supplements containing them, citing concerns about safety and potential for toxicity.
Sucralose
The world's most commonly used artificial sweetener, sucralose is a chlorinated sugar that is about 600 times sweeter than sugar. It is produced from sucrose when three chlorine atoms replace three hydroxyl groups. It is used in beverages, frozen desserts, chewing gum, baked goods and other foods. Unlike other artificial sweeteners, it is stable when heated and can therefore be used in baked and fried goods. Discovered in 1976, the FDA approved sucralose for use in 1998.Most of the controversy surrounding Splenda, a sucralose sweetener, is focused not on safety but on its marketing. It has been marketed with the slogan, "Splenda is made from sugar, so it tastes like sugar." Sucralose is prepared from either of two sugars, sucrose or raffinose. With either base sugar, processing replaces three oxygen-hydrogen groups in the sugar molecule with three chlorine atoms.
The "Truth About Splenda" website was created in 2005 by the Sugar Association, an organization representing sugar beet and sugar cane farmers in the United States, to provide its view of sucralose. In December 2004, five separate false-advertising claims were filed by the Sugar Association against Splenda manufacturers Merisant and McNeil Nutritionals for claims made about Splenda related to the slogan, "Made from sugar, so it tastes like sugar." French courts ordered the slogan to no longer be used in France, while in the U.S., the case came to an undisclosed settlement during the trial.
There are few safety concerns pertaining to sucralose and the way sucralose is metabolized suggests a reduced risk of toxicity. For example, sucralose is extremely insoluble in fat and, thus, does not accumulate in fatty tissues; sucralose also does not break down and will dechlorinate only under conditions that are not found during regular digestion. Only about 15% of sucralose is absorbed by the body and most of it passes out of the body unchanged.
In 2017, sucralose was the most common sugar substitute used in the manufacture of foods and beverages; it had 30% of the global market, which was projected to be valued at $2.8 billion by 2021.