Nash equilibrium
In game theory, a Nash equilibrium is a situation where no player could gain more by changing their own strategy in a game. Nash equilibrium is the most commonly used solution concept for non-cooperative games.
If each player has chosen a strategy — an action plan based on what has happened so far in the game — and no one can increase one's own expected payoff by changing one's strategy while the other players keep theirs unchanged, then the current set of strategy choices constitutes a Nash equilibrium.
If two players Alice and Bob choose strategies A and B, is a Nash equilibrium if Alice has no other strategy available that does better than A at maximizing her payoff in response to Bob choosing B, and Bob has no other strategy available that does better than B at maximizing his payoff in response to Alice choosing A. In a game in which Carol and Dan are also players, is a Nash equilibrium if A is Alice's best response to, B is Bob's best response to, and so forth.
The idea of Nash equilibrium dates back to the time of Cournot, who in 1838 applied it to his model of competition in an oligopoly. John Nash showed that there is a Nash equilibrium, possibly in mixed strategies, for every finite game.
Applications
Game theorists use Nash equilibrium to analyze the outcome of the strategic interaction of several decision makers. In a strategic interaction, the outcome for each decision-maker depends on the decisions of the others as well as their own. The simple insight underlying Nash's idea is that one cannot predict the choices of multiple decision makers if one analyzes those decisions in isolation. Instead, one must ask what each player would do taking into account what the player expects the others to do. Nash equilibrium is achieved when no player can improve their outcome by changing their decision, assuming the other players' choices remain unchanged.The concept has been used to analyze hostile situations such as wars and arms races, and also how conflict may be mitigated by repeated interaction. It has also been used to study to what extent people with different preferences can cooperate, and whether they will take risks to achieve a cooperative outcome. It has been used to study the adoption of technical standards, and also the occurrence of bank runs and currency crises. Other applications include traffic flow, how to organize auctions, the outcome of efforts exerted by multiple parties in the education process, regulatory legislation such as environmental regulations, natural resource management, analysing strategies in marketing, penalty kicks in football, robot navigation in crowds, energy systems, transportation systems, evacuation problems and wireless communications.
History
Nash equilibrium is named after American mathematician John Forbes Nash Jr. The same idea was used in a particular application in 1838 by Antoine Augustin Cournot in his theory of oligopoly. In Cournot's theory, each of several firms choose how much output to produce to maximize its profit. The best output for one firm depends on the outputs of the others. A Cournot equilibrium occurs when each firm's output maximizes its profits given the output of the other firms, which is a pure-strategy Nash equilibrium. Cournot also introduced the concept of best response dynamics in his analysis of the stability of equilibrium. Cournot did not use the idea in any other applications, however, or define it generally.The modern concept of Nash equilibrium is instead defined in terms of mixed strategies, where players choose a probability distribution over possible pure strategies. The concept of a mixed-strategy equilibrium was introduced by John von Neumann and Oskar Morgenstern in their 1944 book The Theory of Games and Economic Behavior, but their analysis was restricted to the special case of zero-sum games. They showed that a mixed-strategy Nash equilibrium will exist for any zero-sum game with a finite set of actions. The contribution of Nash in his 1951 article "Non-Cooperative Games" was to define a mixed-strategy Nash equilibrium for any game with a finite set of actions and prove that at least one Nash equilibrium must exist in such a game. The key to Nash's ability to prove existence far more generally than von Neumann lay in his definition of equilibrium. According to Nash, "an equilibrium point is an n-tuple such that each player's mixed strategy maximizes payoff if the strategies of the others are held fixed. Thus each player's strategy is optimal against those of the others." Putting the problem in this framework allowed Nash to employ the Kakutani fixed-point theorem in his 1950 paper to prove existence of equilibria. His 1951 paper used the simpler Brouwer fixed-point theorem for the same purpose.
Game theorists have discovered that in some circumstances Nash equilibrium makes invalid predictions or fails to make a unique prediction. They have proposed many solution concepts designed to rule out implausible Nash equilibria. One particularly important issue is that some Nash equilibria may be based on threats that are not 'credible'. In 1965 Reinhard Selten proposed subgame perfect equilibrium as a refinement that eliminates equilibria which depend on non-credible threats. Other extensions of the Nash equilibrium concept have addressed what happens if a game is repeated, or what happens if a game is played in the absence of complete information. However, subsequent refinements and extensions of Nash equilibrium share the main insight on which Nash's concept rests: the equilibrium is a set of strategies such that each player's strategy is optimal given the choices of the others.
Definitions
A strategy profile is a set of strategies, one for each player. Informally, a strategy profile is a Nash equilibrium if no player can do better by unilaterally changing their strategy. To see what this means, imagine that each player is told the strategies of the others. Suppose then that each player asks themselves: "Knowing the strategies of the other players, and treating the strategies of the other players as set in stone, can I benefit by changing my strategy?"For instance if a player prefers "Yes", then that set of strategies is not a Nash equilibrium. But if every player prefers not to switch then the strategy profile is a Nash equilibrium. Thus, each strategy in a Nash equilibrium is a best response to the other players' strategies in that equilibrium.
Formally, let be the set of all possible strategies for player, where. Let be a strategy profile, a set consisting of one strategy for each player, where denotes the strategies of all the players except. Let be player is payoff as a function of the strategies. The strategy profile is a Nash equilibrium if
A game can have more than one Nash equilibrium. Even if the equilibrium is unique, it might be weak: a player might be indifferent among several strategies given the other players' choices. It is unique and called a strict Nash equilibrium if the inequality is strict so one strategy is the unique best response:
The strategy set can be different for different players, and its elements can be a variety of mathematical objects. Most simply, a player might choose between two strategies, e.g. Or the strategy set might be a finite set of conditional strategies responding to other players, e.g. Or it might be an infinite set, a continuum or unbounded, e.g. such that is a non-negative real number. Nash's existence proofs assume a finite strategy set, but the concept of Nash equilibrium does not require it.
Variants
Pure/mixed equilibrium
A game can have a pure-strategy or a mixed-strategy Nash equilibrium. In the latter, not every player always plays the same strategy. Instead, there is a probability distribution over different strategies.Strict/non-strict equilibrium
Suppose that in the Nash equilibrium, each player asks themselves: "Knowing the strategies of the other players, and treating the strategies of the other players as set in stone, would I suffer a loss by changing my strategy?"If every player's answer is "Yes", then the equilibrium is classified as a strict Nash equilibrium.
If instead, for some player, there is exact equality between the strategy in Nash equilibrium and some other strategy that gives exactly the same payout, then the equilibrium is classified as a weak or non-strict Nash equilibrium.
Equilibria for coalitions
The Nash equilibrium defines stability only in terms of individual player deviations. In cooperative games such a concept is not convincing enough. Strong Nash equilibrium allows for deviations by every conceivable coalition. Formally, a strong Nash equilibrium is a Nash equilibrium in which no coalition, taking the actions of its complements as given, can cooperatively deviate in a way that benefits all of its members. However, the strong Nash concept is sometimes perceived as too "strong" in that the environment allows for unlimited private communication. In fact, strong Nash equilibrium has to be weakly Pareto efficient. As a result of these requirements, strong Nash is too rare to be useful in many branches of game theory. However, in games such as elections with many more players than possible outcomes, it can be more common than a stable equilibrium.A refined Nash equilibrium known as coalition-proof Nash equilibrium occurs when players cannot do better even if they are allowed to communicate and make "self-enforcing" agreement to deviate. Every correlated strategy supported by iterated strict dominance and on the Pareto frontier is a CPNE. Further, it is possible for a game to have a Nash equilibrium that is resilient against coalitions less than a specified size, k. CPNE is related to the theory of the core.
Existence
Nash proved that if mixed strategies are allowed, then every game with a finite number of players in which each player can choose from finitely many pure strategies has at least one Nash equilibrium, which might be a pure strategy for each player or might be a probability distribution over strategies for each player.Nash equilibria need not exist if the set of choices is infinite and non-compact. For example:
- A game where two players simultaneously name a number and the player naming the larger number wins does not have a NE, as the set of choices is not compact because it is unbounded.
- Each of two players chooses a real number strictly less than 5 and the winner is whoever has the biggest number; no biggest number strictly less than 5 exists. Here, the set of choices is not compact because it is not closed.