History of geology
The history of geology is concerned with the development of the natural science of geology. Geology is the scientific study of the origin, history, and structure of the Earth.
Antiquity
In the year 540 BC, Xenophanes described fossil fish and shells found in deposits on mountains. Similar fossils were noted by Herodotus.Some of the first geological thoughts were about the origin of the Earth. Ancient Greece developed some primary geological concepts concerning the origin of the Earth. Additionally, in the 4th century BC Aristotle made critical observations of the slow rate of geological change. He observed the composition of the land and formulated a theory where the Earth changes at a slow rate and that these changes cannot be observed during one person's lifetime. Aristotle developed one of the first evidence-based concepts connected to the geological realm regarding the rate at which the Earth physically changes.
However, it was his successor at the Lyceum, the philosopher Theophrastus, who made the greatest progress in antiquity in his work On Stones. He described many minerals and ores both from local mines such as those at Laurium near Athens, and further afield. He also quite naturally discussed types of marble and building materials like limestones, and attempted a primitive classification of the properties of minerals by their properties such as hardness.
Much later in the Roman period, Pliny the Elder produced a very extensive discussion of many more minerals and metals then widely used for practical ends. He was among the first to correctly identify the origin of amber as a fossilized resin from trees by the observation of insects trapped within some pieces. He also laid the basis of crystallography by recognising the octahedral habit of diamond.
Middle Ages
was one of the earliest Muslim geologists, whose works included the earliest writings on the geology of India, hypothesizing that the Indian subcontinent was once a sea.Ibn Sina, a Persian polymath, made significant contributions to geology and the natural sciences along with other natural philosophers such as Ikhwan AI-Safa and many others. Ibn Sina wrote an encyclopedic work entitled "Kitab al-Shifa", in which Part 2, Section 5, contains his commentary on Aristotle's Mineralogy and Meteorology, in six chapters: Formation of mountains, The advantages of mountains in the formation of clouds; Sources of water; Origin of earthquakes; Formation of minerals; The diversity of the Earth's terrain.
In medieval China, one of the most intriguing naturalists was Shen Kuo, a polymath personality who dabbled in many fields of study in his age. In terms of geology, Shen Kuo is one of the first naturalists to have formulated a theory of geomorphology. This was based on his observations of sedimentary uplift, soil erosion, deposition of silt, and marine fossils found in the Taihang Mountains, located hundreds of miles from the Pacific Ocean. He also formulated a theory of gradual climate change, after his observation of ancient petrified bamboos found in a preserved state underground near Yanzhou, in the dry northern climate of Shaanxi province. He formulated a hypothesis for the process of land formation: based on his observation of fossil shells in a geological stratum in a mountain hundreds of miles from the ocean, he inferred that the land was formed by erosion of the mountains and by deposition of silt.
17th century
It was not until the 17th century that geology made great strides in its development. At this time, geology became its own entity in the world of natural science. It was discovered by the Christian world that different translations of the Bible contained different versions of the biblical text. The one entity that remained consistent through all of the interpretations was that the Deluge had formed the world's geology and geography. To prove the Bible's authenticity, individuals felt the need to demonstrate with scientific evidence that the Great Flood had in fact occurred. With this enhanced desire for data came an increase in observations of the Earth's composition, which in turn led to the discovery of fossils.In 1687, in his Principia, the mathematician and physicist Isaac Newton was the first to calculate the age of Earth by experiment, based on a globe of iron cooling equal to Earth in size, at 50,000 years old.
Although theories that resulted from the heightened interest in the Earth's composition were often manipulated to support the concept of the Deluge, a genuine outcome was a greater interest in the makeup of the Earth. Due to the strength of Christian beliefs during the 17th century, the theory of the origin of the Earth that was most widely accepted was A New Theory of the Earth published in 1696, by William Whiston. Whiston used Christian reasoning to "prove" that the Great Flood had occurred and that the flood had formed the rock strata of the Earth.
During the 17th century, both religious and scientific speculation about the Earth's origin further propelled interest in the Earth and brought about more systematic identification techniques of the Earth's strata. The Earth's strata can be defined as horizontal layers of rock having approximately the same composition throughout. An important pioneer in the science was Nicolas Steno. Steno was trained in the classical texts on science; however, by 1659 he seriously questioned accepted knowledge of the natural world. Importantly, he questioned the idea that fossils grew in the ground, as well as common explanations of rock formation. His investigations and his subsequent conclusions on these topics have led scholars to consider him one of the founders of modern stratigraphy and geology.
18th century
From this increased interest in the nature of the Earth and its origin, came a heightened attention to minerals and other components of the Earth's crust. Moreover, the increasing economic importance of mining in Europe during the mid to late 18th century made the possession of accurate knowledge about ores and their natural distribution vital. Scholars began to study the makeup of the Earth in a systematic manner, with detailed comparisons and descriptions not only of the land itself, but of the semi-precious metals it contained, which had great commercial value. For example, in 1774 Abraham Gottlob Werner published the book Von den äusserlichen Kennzeichen der Fossilien , which brought him widespread recognition because he presented a detailed system for identifying specific minerals based on external characteristics. The more efficiently productive land for mining could be identified and the semi-precious metals could be found, the more money could be made. This drive for economic gain propelled geology into the limelight and made it a popular subject to pursue. With an increased number of people studying it, came more detailed observations and more information about the Earth.Also during the eighteenth century, aspects of the history of the Earthnamely the divergences between the accepted religious concept and factual evidenceonce again became a popular topic for discussion in society. In 1749, the French naturalist Georges-Louis Leclerc, Comte de Buffon published his Histoire Naturelle, in which he attacked the popular Biblical accounts given by Whiston and other ecclesiastical theorists of the history of the Earth. From experimentation with cooling globes, he found that the age of the Earth was not only 4,000 or 5,500 years as inferred from the Bible, but rather 75,000 years.
Another individual who described the history of the Earth with reference to neither God nor the Bible was the philosopher Immanuel Kant, who published his Universal Natural History and Theory of the Heavens in 1755. From the works of these respected men, as well as others, it became acceptable by the mid eighteenth century to question the age of the Earth. This questioning represented a turning point in the study of the Earth. It was now possible to study the history of the Earth from a scientific perspective without religious preconceptions.
With the application of scientific methods to the investigation of the Earth's history, the study of geology could become a distinct field of science. To begin with, the terminology and definition of what constituted geological study had to be worked out. The term "geology" was first used technically in publications by two Genevan naturalists, Jean-André Deluc and Horace-Bénédict de Saussure, though "geology" was not well received as a term until it was taken up in the very influential compendium, the Encyclopédie, published beginning in 1751 by Denis Diderot.
Once the term was established to denote the study of the Earth and its history, geology slowly became more generally recognized as a distinct science that could be taught as a field of study at educational institutions. In 1741 the best-known institution in the field of natural history, the National Museum of Natural History in France, created the first teaching position designated specifically for geology. This was an important step in further promoting knowledge of geology as a science and in recognizing the value of widely disseminating such knowledge.
By the 1770s, chemistry was starting to play a pivotal role in the theoretical foundation of geology and two opposite theories with committed followers emerged. These contrasting theories offered differing explanations of how the rock layers of the Earth's surface had formed. One suggested that a liquid inundation, perhaps like the biblical deluge, had created all geological strata. The theory extended chemical theories that had been developing since the seventeenth century and was promoted by Scotland's John Walker, Sweden's Johan Gottschalk Wallerius and Germany's Abraham Werner. Of these names, Werner's views become internationally influential around 1800. He argued that the Earth's layers, including basalt and granite, had formed as a precipitate from an ocean that covered the entire Earth. Werner's system was influential and those who accepted his theory were known as Diluvianists or Neptunists. The Neptunist thesis was the most popular during the late eighteenth century, especially for those who were chemically trained.
However, another thesis slowly gained currency from the 1780s forward. Instead of water, some mid-eighteenth-century naturalists such as Buffon had suggested that strata had been formed through heat. Abbé Anton Moro, who had studied volcanic islands, first proposed the theory before 1750, and James Hutton subsequently developed it as part of his Theory of the Earth. Hutton argued against the theory of Neptunism, proposing instead the theory of based on heat. Those who followed this thesis during the early nineteenth century referred to this view as Plutonism: the formation of the Earth through the gradual solidification of a molten mass at a slow rate by the same processes that had occurred throughout history and continued in the present day. This led him to the conclusion that the Earth was immeasurably old and could not possibly be explained within the limits of the chronology inferred from the Bible. Plutonists believed that volcanic processes were the chief agent in rock formation, not water from a Great Flood.