Latimeria
Latimeria is a rare genus of fish which contains the two only living species of coelacanth. It includes two extant species: the West Indian Ocean coelacanth and the Indonesian coelacanth. They follow the oldest known living lineage of Sarcopterygii, which means they are more closely related to lungfish and tetrapods than to the common ray-finned fishes and cartilaginous fishes.
They are found along the coastlines of the Indian Ocean and Indonesia. Since there are only two known species of coelacanth and both are threatened, it is one of the most endangered genera of animals in the world. The West Indian Ocean coelacanth is a critically endangered species.
Description
Coelacanths of genus Latimeria are large, plump, lobe-finned fish that can grow to more than and weigh around. They are estimated to live up to 100 years, based on analysis of annual growth marks on scales, and reach maturity around the age of 55; the oldest known specimen was 84 years old at the time of its capture in 1960.Based on growth rings in the creatures' ear bones, scientists infer that individual coelacanths may live as long as 80 to 100 years. Coelacanths live as deep as 700 m below sea level, but are more commonly found at depths of.
Living examples of Latimeria chalumnae have a deep blue color which probably camouflages them from prey species; meanwhile, the Indonesian species is brown.
Anatomy and physiology
Coelacanth eyes are very sensitive, and have a tapetum lucidum. Coelacanths are almost never caught in the daytime, but have been caught at all phases of the moon. Coelacanth eyes have many rods, receptors in the retina that help animals see in dim light. Together, the rods and tapetum help the fish see better in dark water. The eye is acclimatized to seeing in poor light by rods that absorb mostly short wavelengths. Coelacanth vision has evolved to a mainly blue-shifted color capacity. Pseudomaxillary folds surround the mouth and replace the maxilla, a structure absent in coelacanths. Two nostrils, along with four other external openings, appear between the premaxilla and lateral rostral bones. The nasal sacs resemble those of many other fish and do not contain an internal nostril. The coelacanth's rostral organ, contained within the ethmoid region of the braincase, has three unguarded openings into the environment and is used as a part of the coelacanth's laterosensory system. The coelacanth's auditory reception is mediated by its inner ear, which is very similar to that of tetrapods and is classified as being a basilar papilla.The coelacanth's heart is shaped differently from that of most modern fish, with its chambers arranged in a straight tube. The coelacanth's braincase is 98.5% filled with fat; only 1.5% of the braincase contains brain tissue. The cheeks of the coelacanth are unique because the opercular bone is very small and holds a large soft-tissue opercular flap. A spiracular chamber is present, but the spiracle is closed and never opens during development. Also unique to extant coelacanths is the presence of a "fatty lung" or a fat-filled single-lobed vestigial lung, homologous to other fishes' swim bladders. The parallel development of a fatty organ for buoyancy control suggests a unique specialization for deep-water habitats. There are small and hard but flexible plates around the vestigial lung in adult specimens, though not around the fatty organ. The plates most likely had a regulation function for the volume of the lung. Due to the size of the fatty organ, researchers assume that it is responsible for the kidney's unusual relocation. The two kidneys, which are fused into one, are located ventrally within the abdominal cavity, posterior to the cloaca.
Scientific research suggests the coelacanth must stay in cold, well-oxygenated water or else its blood cannot absorb enough oxygen. The fish seems to be very well adapted to its environment, which is seen as one of the reasons why it has the slowest evolving genome of all known vertebrates.
Biology
Coelacanths are nocturnal piscivorous drift-hunters. Coelacanths are opportunistic feeders, hunting cuttlefish, squid, snipe eels, small sharks, and other fish found in their deep reef and volcanic slope habitats. Coelacanths are also known to swim head down, backwards or belly up to locate their prey, presumably using their rostral glands. To move around, they most commonly take advantage of up- or down-wellings of current and drift. Their paired fins stabilize movement through the water. While on the ocean floor, they do not use the paired fins for any kind of movement. Coelacanths generate thrust with their caudal fins for quick starts. Due to the abundance of its fins, the coelacanth has high maneuverability and can orient its body in almost any direction in the water. They have been seen doing headstands as well as swimming belly up. It is thought that the rostral organ helps give the coelacanth electroreception, which aids in movement around obstacles.They are "passive drift feeders", slowly drifting along currents with only minimal self-propulsion, eating whatever prey they encounter. Coelacanths also use their rostral organ for its electroreception to be able to detect nearby prey in low light settings.
Image:Coelacanth1.JPG|thumb|Latimeria chalumnae model in the Oxford University Museum of Natural History, showing the coloration in life
Coelacanths are fairly peaceful when encountering others of their kind. They do avoid body contact, however, withdrawing immediately if contact occurs. When approached by foreign potential predators, they show panic flight reactions, suggesting that coelacanths are most likely prey to large deepwater predators. Shark bite marks have been seen on coelacanths; sharks are common in areas inhabited by coelacanths. Electrophoresis testing of 14 coelacanth enzymes shows little genetic diversity between coelacanth populations. Among the fish that have been caught were about equal numbers of males and females. Population estimates range from 210 individuals per population to 500 per population. Because coelacanths have individual color markings, scientists think that they recognize other coelacanths via electric communication.
The coelacanths which live near Sodwana Bay, South Africa, rest in caves at depths of during daylight hours, but disperse and swim to depths as shallow as when hunting at night. The depth is not as important as their need for very dim light and, more importantly, for water which has a temperature of. They will rise or sink to find these conditions. The amount of oxygen their blood can absorb from the water through the gills is dependent on water temperature.
Scientists suspect that one reason this fish has been so successful is that specimens are able to slow down their metabolisms at will, sinking into the less-inhabited depths and minimizing their nutritional requirements in a sort of hibernation mode.
Reproduction
Coelacanths are ovoviviparous, meaning that the female retains the fertilized eggs within her body while the embryos develop during a gestation period of five years. Typically, females are larger than the males; their scales and the skin folds around the cloaca differ. The male coelacanth has no distinct copulatory organs, just a cloaca, which has a urogenital papilla surrounded by erectile caruncles. It is hypothesized that the cloaca everts to serve as a copulatory organ. Coelacanth eggs are large, with only a thin layer of membrane to protect them. Embryos hatch within the female and eventually are born alive, which is a rarity in fish. This was only discovered when the American Museum of Natural History dissected its first coelacanth specimen in 1975 and found it pregnant with five embryos. Young coelacanths resemble the adult, the main differences being an external yolk sac, larger eyes relative to body size and a more pronounced downward slope of the body. The juvenile coelacanth's broad yolk sac hangs below the pelvic fins. The scales and fins of the juvenile are completely matured; however, it does lack odontodes, which it gains during maturation.Female coelacanths give birth to live young, called "pups", in groups of between five and 25 fry at a time; the pups are capable of surviving on their own immediately after birth. Their reproductive behaviors are not well known, but it is believed that they are not sexually mature until after 20 years of age. It was thought that gestation time was 13 to 15 months, though research carried out in 2021 now suggests a gestation period of up to five years, which is 1.5 years longer than the deep-sea frilled shark, the previous record holder.
A study that assessed the paternity of the embryos inside two coelacanth females indicated that each clutch was sired by a single male. This could mean that females mate monandrously, i.e. with one male only. Polyandry, female mating with multiple males, is common in both plants and animals and can be advantageous, but also confers costs.
Evolutionary relationships
Latimeria is the type genus of Latimeriidae, a group of coelacanths that first appeared in the Early Triassic. Within Latimeriidae, it has been found by cladistic analysis to be most closely related to the genus Swenzia, known from the Late Jurassic of Europe, leaving a long ghost lineage of over 150 million years from its closest relative.An analysis of an Indonesian coelacanth specimen recovered from Waigeo, West Papua in eastern Indonesia indicates that there may be another lineage of the Indonesian coelacanth, and the two lineages may have diverged 13 million years ago. Whether this new lineage represents a subspecies or a new species has yet to be determined.
Genetics
In 2013, a research group published the genome sequence of the coelacanth in the scientific journal Nature.Due to their lobed fins and other features, it was once hypothesized that the coelacanth might be the youngest diverging non-tetrapod sarcopterygian. But after sequencing the full genome of the coelacanth, it was discovered that the lungfish instead is more closely related to tetrapods. Coelacanths and rhipidistians had already diverged from each other before the lungfish made the transition to land.
Another important discovery made from the genome sequencing is that the coelacanths are still evolving today. While phenotypic similarity between extant and extinct coelacanths suggests there is limited evolutionary pressure on these organisms to undergo morphological divergence, they are undergoing measurable genetic divergence. Despite prior studies showing that protein coding regions are undergoing evolution at a substitution rate much lower than other sarcopterygians, the non-coding regions subject to higher transposable element activity show marked divergence even between the two extant coelacanth species. This has been facilitated in part by a coelacanth-specific endogenous retrovirus of the Epsilon retrovirus family.