Miocene
The Miocene is the first geological epoch of the Neogene Period and extends from about . The Miocene was named by Scottish geologist Charles Lyell and comes from Ancient Greek μείων, meaning "less", and καινός, meaning "new, recent", and thus, means "less recent", because it has 18% fewer modern marine invertebrates than the Pliocene has. The Miocene followed the Oligocene and preceded the Pliocene.
As Earth went from the Oligocene through the Miocene and into the Pliocene, the climate slowly cooled towards a series of ice ages. The Miocene boundaries are not marked by distinct global events but by regionally defined transitions from the warmer Oligocene to the cooler Pliocene Epoch.
During the Early Miocene, Afro-Arabia collided with Eurasia, severing the connection between the Mediterranean and Indian Oceans and enabling the interchange of fauna between the continents, including the dispersal of proboscideans and hominoids into Eurasia. During the late Miocene, the connections between the Atlantic and Mediterranean closed, causing the Mediterranean Sea to almost completely evaporate. This event is referred to as the "Messinian salinity crisis". Then, at the Miocene–Pliocene boundary, the Strait of Gibraltar opened, and the Mediterranean refilled. That event is referred to as the "Zanclean flood".
Also during the early Miocene, the apes first evolved, began diversifying, and became widespread throughout the Old World. Around the end of this epoch, the ancestors of humans had split away from the ancestors of the chimpanzees and had begun following their own evolutionary path during the final Messinian Stage of the Miocene. As in the Oligocene before it, grasslands continued to expand, and forests to dwindle. In the seas of the Miocene, kelp forests made their first appearance and soon became one of Earth's most productive ecosystems.
The plants and animals of the Miocene were recognizably modern. Mammals and birds were well established. Whales, pinnipeds, and kelp spread.
The Miocene is of particular interest to geologists and palaeoclimatologists because major phases of the geology of the Himalaya occurred during that epoch, affecting monsoonal patterns in Asia, which were interlinked with glacial periods in the northern hemisphere.
Subdivisions
The Miocene faunal stages from youngest to oldest are typically named according to the International Commission on Stratigraphy:| Sub-epoch | Faunal stage | Time range |
| Late Miocene | Messinian | 7.246–5.333 Ma |
| Late Miocene | Tortonian | 11.63–7.246 Ma |
| Middle Miocene | Serravallian | 13.82–11.63 Ma |
| Middle Miocene | Langhian | 15.97–13.82 Ma |
| Early Miocene | Burdigalian | 20.44–15.97 Ma |
| Early Miocene | Aquitanian | 23.03–20.44 Ma |
Regionally, other systems are used, based on characteristic land mammals; some of them overlap with the preceding Oligocene and following Pliocene Epochs:
| European | North American | South American |
Paleogeography
Continents continued to drift toward their present positions. Of the modern geologic features, only the land bridge between South America and North America was absent, although South America was approaching the western subduction zone in the Pacific Ocean, causing both the rise of the Andes and a southward extension of the Meso-American peninsula.Mountain building took place in western North America, Europe, and East Asia. Both continental and marine Miocene deposits are common worldwide with marine outcrops common near modern shorelines. Well studied continental exposures occur in the North American Great Plains and in Argentina.
The global trend was towards increasing aridity caused primarily by global cooling reducing the ability of the atmosphere to absorb moisture, particularly after 7 to 8 million years ago. Uplift of East Africa in the late Miocene was partly responsible for the shrinking of tropical rain forests in that region, and Australia got drier as it entered a zone of low rainfall in the Late Miocene.
Eurasia
The Indian Plate continued to collide with the Eurasian Plate, creating new mountain ranges and uplifting the Tibetan Plateau, resulting in the rain shadowing and aridification of the Asian interior. The Tian Shan experienced significant uplift in the Late Miocene, blocking westerlies from coming into the Tarim Basin and drying it as a result.At the beginning of the Miocene, the northern margin of the Arabian plate, then part of the African landmass, collided with Eurasia; as a result, the Tethys seaway continued to shrink and then disappeared as Africa collided with Eurasia in the Turkish–Arabian region. The first step of this closure occurred 20 Ma, reducing water mass exchange by 90%, while the second step occurred around 13.8 Ma, coincident with a major expansion of Antarctic glaciers. This severed the connection between the Indian Ocean and the Mediterranean Sea and formed the present land connection between Afro-Arabia and Eurasia. The subsequent uplift of mountains in the western Mediterranean region and a global fall in sea levels combined to cause a temporary drying up of the Mediterranean Sea near the end of the Miocene.
The Paratethys underwent a significant transgression during the early Middle Miocene. Around 13.8 Ma, during a global sea level drop, the Eastern Paratethys was cut off from the global ocean by the closure of the Bârlad Strait, effectively turning it into a saltwater lake. From 13.8 to 13.36 Ma, an evaporite period similar to the later Messinian salinity crisis in the Mediterranean ensued in the Central Paratethys, cut off from sources of freshwater input by its separation from the Eastern Paratethys. From 13.36 to 12.65 Ma, the Central Paratethys was characterised by open marine conditions, before the reopening of the Bârlad Strait resulted in a shift to brackish-marine conditions in the Central Paratethys, causing the Badenian-Sarmatian Extinction Event. As a result of the Bârlad Strait's reopening, the lake levels of the Eastern Paratethys dropped as it once again became a sea.
The Fram Strait opened during the Miocene and acted as the only throughflow for Atlantic Water into the Arctic Ocean until the Quaternary period. Due to regional uplift of the continental shelf, this water could not move through the Barents Seaway in the Miocene.
The modern day Mekong Delta took shape after 8 Ma. Geochemistry of the Qiongdongnan Basin in the northern South China Sea indicates the Pearl River was a major source of sediment flux into the sea during the Early Miocene and was a major fluvial system as in the present.
South America
During the Oligocene and Early Miocene, the coast of northern Brazil, Colombia, south-central Peru, central Chile and large swathes of inland Patagonia were subject to a marine transgression. The transgressions in the west coast of South America are thought to be caused by a regional phenomenon while the steadily rising central segment of the Andes represents an exception. While there are numerous registers of Oligocene–Miocene transgressions around the world it is doubtful that these correlate.It is thought that the Oligocene–Miocene transgression in Patagonia could have temporarily linked the Pacific and Atlantic Oceans, as inferred from the findings of marine invertebrate fossils of both Atlantic and Pacific affinity in La Cascada Formation. Connection would have occurred through narrow epicontinental seaways that formed channels in a dissected topography.
The Antarctic Plate started to subduct beneath South America 14 million years ago in the Miocene, forming the Chile Triple Junction. At first the Antarctic Plate subducted only in the southernmost tip of Patagonia, meaning that the Chile Triple Junction lay near the Strait of Magellan. As the southern part of Nazca Plate and the Chile Rise became consumed by subduction the more northerly regions of the Antarctic Plate begun to subduct beneath Patagonia so that the Chile Triple Junction advanced to the north over time. The asthenospheric window associated to the triple junction disturbed previous patterns of mantle convection beneath Patagonia inducing an uplift of ca. 1 km that reversed the Oligocene–Miocene transgression.
As the southern Andes rose in the Middle Miocene the resulting rain shadow originated the Patagonian Desert to the east.
Australia
Far northern Australia was monsoonal during the Miocene. Although northern Australia is often believed to have been much wetter during the Miocene, this interpretation may be an artefact of preservation bias of riparian and lacustrine plants; this finding has itself been challenged by other papers. Western Australia, like today, was arid, particularly so during the Middle Miocene.Climate
Climates remained moderately warm, although the slow global cooling that eventually led to the Pleistocene glaciations continued. Although a long-term cooling trend was well underway, there is evidence of a warm period during the Miocene when the global climate rivalled that of the Oligocene. The climate of the Miocene has been suggested as a good analogue for future warmer climates caused by anthropogenic global warming, with this being especially true of the global climate during the Middle Miocene Climatic Optimum, because the last time carbon dioxide levels were comparable to projected future atmospheric carbon dioxide levels resulting from anthropogenic climate change was during the MMCO. The Ross Sea margin of the East Antarctic Ice Sheet was highly dynamic during the Early Miocene.The Miocene began with the Early Miocene Cool Event around 23 million years ago, which marked the start of the Early Miocene Cool Interval. This cool event occurred immediately after the Oligocene-Miocene Transition during a major expansion of Antarctica's ice sheets, but was not associated with a significant drop in atmospheric carbon dioxide levels. Both continental and oceanic thermal gradients in mid-latitudes during the Early Miocene were very similar to those in the present. Global cooling caused the East Asian Summer Monsoon to begin to take on its modern form during the Early Miocene. From 22.1 to 19.7 Ma, the Xining Basin experienced relative warmth and humidity amidst a broader aridification trend.
The EMCI ended 18 million years ago, giving way to the Middle Miocene Warm Interval, the warmest part of which was the MMCO that began 16 million years ago. As the world transitioned into the MMCO, carbon dioxide concentrations varied between 300 and 500 ppm. Global annual mean surface temperature during the MMCO was about 18.4 °C. MMCO warmth was driven by the activity of the Columbia River Basalts and enhanced by decreased albedo from the reduction of deserts and expansion of forests. Climate modelling suggests additional, currently unknown, factors also worked to create the warm conditions of the MMCO. The MMCO saw the expansion of the tropical climatic zone to much larger than its current size. The July ITCZ, the zone of maximal monsoonal rainfall, moved to the north, increasing precipitation over southern China whilst simultaneously decreasing it over Indochina during the EASM. Western Australia was at this time characterised by exceptional aridity. In Antarctica, average summer temperatures on land reached 10 °C. In the oceans, the lysocline shoaled by approximately half of a kilometre during warm phases that corresponded to orbital eccentricity maxima. The MMCO ended around 14 million years ago, when global temperatures fell in the Middle Miocene Climate Transition. Abrupt increases in opal deposition indicate this cooling was driven by enhanced drawdown of carbon dioxide via silicate weathering. The MMCT caused a sea surface temperature drop of approximately 6 °C in the North Atlantic. The drop in benthic foraminiferal δ18O values was most noticeable in the waters around Antarctica, suggesting cooling was most intense there. Around this time the Mi3b glacial event occurred. The East Antarctic Ice Sheet markedly stabilised following the MMCT. The intensification of glaciation caused a decoherence of sediment deposition from the 405 kyr eccentricity cycle.
The MMWI ended about 11 Ma, when the Late Miocene Cool Interval started. A major but transient warming occurred around 10.8-10.7 Ma. During the Late Miocene, the Earth's climate began to display a high degree of similarity to that of the present day. The 173 kyr obliquity modulation cycle governed by Earth's interactions with Saturn became detectable in the Late Miocene. By 12 Ma, Oregon was a savanna akin to that of the western margins of the Sierra Nevada of northern California. Central Australia became progressively drier, although southwestern Australia experienced significant wettening from around 12 to 8 Ma. The South Asian Winter Monsoon underwent strengthening ~9.2–8.5 Ma. From 7.9 to 5.8 Ma, the East Asian Winter Monsoon became stronger synchronously with a southward shift of the subarctic front. Greenland may have begun to have large glaciers as early as 8 to 7 Ma, although the climate for the most part remained warm enough to support forests there well into the Pliocene. Zhejiang, China was noticeably more humid than today. In the Great Rift Valley of Kenya, there was a gradual and progressive trend of increasing aridification, though it was not unidirectional, and wet humid episodes continued to occur. Between 7 and 5.3 Ma, temperatures dropped sharply again in the Late Miocene Cooling, most likely as a result of a decline in atmospheric carbon dioxide and a drop in the amplitude of Earth's obliquity, and the Antarctic ice sheet was approaching its present-day size and thickness. Ocean temperatures plummeted to near-modern values during the LMC; extratropical sea surface temperatures dropped substantially by approximately 7–9 °C. 41 kyr obliquity cycles became the dominant orbital climatic control 7.7 Ma and this dominance strengthened 6.4 Ma. Benthic δ18O values show significant glaciation occurred from 6.26 to 5.50 Ma, during which glacial-interglacial cycles were governed by the 41 kyr obliquity cycle. A major reorganisation of the carbon cycle occurred approximately 6 Ma, causing continental carbon reservoirs to no longer expand during cold spells, as they had done during cold periods in the Oligocene and most of the Miocene. At the end of the Miocene, global temperatures rose again as the amplitude of Earth's obliquity increased, which caused increased aridity in Central Asia. Around 5.5 Ma, the EAWM underwent a period of rapid intensification.