Tailings


In mining, tailings or tails are the materials left over after the process of separating the valuable fraction from the uneconomic fraction of an ore. Tailings are different from overburden, which is the waste rock or other material that overlies an ore or mineral body and is displaced during mining without being processed. Waste valorization is the evaluation of waste and residues from an economic process in order to determine their value in reuse or recycling, as what was gangue at the time of separation may increase with time or more sophisticated recovery processes.
The extraction of minerals from ore can be done two ways: placer mining, which uses water and gravity to concentrate the valuable minerals, or hard rock mining, which pulverizes the rock containing the ore and then relies on chemical reactions to concentrate the sought-after material. In the latter, the extraction of minerals from ore requires comminution, i.e., grinding the ore into fine particles to facilitate extraction of the target element. Because of this comminution, tailings consist of a slurry of fine particles, ranging from the size of a grain of sand to a few micrometres. Mine tailings are usually produced from the mill in slurry form, which is a mixture of fine mineral particles and water.
Tailings are likely to be dangerous sources of toxic chemicals such as heavy metals, sulfides, and radioactive content. These chemicals are especially dangerous when stored in water in ponds behind tailings dams. These ponds are also vulnerable to major breaches or leaks from the dams, causing environmental disasters, such as the Mount Polley disaster in British Columbia. Because of these and other environmental concerns such as groundwater leakage, toxic emissions and bird death, tailing piles and ponds have received more scrutiny, especially in developed countries, but the first UN-level standard for tailing management was only established 2020.
There are a wide range of methods for recovering economic value, containing, or otherwise mitigating the impacts of tailings. However, internationally, these practices are poor, sometimes violating human rights.

Terminology

Tailings are also called mine dumps, culm dumps, slimes, refuse, leach residue, slickens, or terra-cone.

Examples

Sulfide minerals

The effluent from the tailings from the mining of sulfidic minerals has been described as "the largest environmental liability of the mining industry". These tailings contain large amounts of pyrite and Iron sulfide, which are rejected from the sought-after ores of copper and nickel, as well as coal. Although harmless underground, these minerals are reactive toward air in the presence of microorganisms, which if not properly managed lead to acid mine drainage.
File:Iron hydroxide precipitate in stream.jpg|thumb|right|Yellow boy in a stream receiving acid mine drainage from surface coal mining

Phosphate rock mining

Between 100 million and 280 million tons of phosphogypsum waste are estimated to be produced annually as a consequence of the processing of phosphate rock for the production of phosphate fertilizers. In addition to being useless and abundant, phosphogypsum is radioactive due to the presence of naturally occurring uranium, thorium, and their daughter isotopes. Depending on the price achievable on the uranium market, extraction of the uranium content may be economically lucrative even absent other incentives, such as reducing the harm the radioactive heavy metals do to the environment.

Aluminium

is a waste product generated in the industrial production of aluminium. Making provision for the approximately that is produced annually is one of the most significant problems in aluminium manufacturing.

Red mud

Coal

Economics

Early mining operations often did not take adequate steps to make tailings areas environmentally safe after closure. Modern mines, particularly those in jurisdictions with well-developed mining regulations and those operated by responsible mining companies, apply waste valorization to reprocessing waste materials, and often include the rehabilitation and proper closure of tailings areas in their costs and activities. For example, the Province of Quebec, Canada, requires not only the submission of a closure plan before the start of mining activity, but also the deposit of a financial guarantee equal to 100% of the estimated rehabilitation costs. Tailings dams are often the most significant environmental liability for a mining project.
Mine tailings may have economic value in carbon sequestration due to the large exposed surface area of the minerals.

Environmental concerns

The fraction of tailings to ore can range from 90 to 98% for some copper ores to 20–50% of the other minerals. The rejected minerals and rocks liberated through mining and processing have the potential to damage the environment by releasing toxic metals, by acid drainage, or by damaging aquatic wildlife that rely on clear water. One example is Cadmium, which is commonly found in zinc ores, can remain in mine tailings and waste water during refining process, causing toxicity to surrounding areas.
Tailings ponds can also be a source of acid drainage, leading to the need for permanent monitoring and treatment of water passing through the tailings dam; the cost of mine cleanup has typically been 10 times that of mining industry estimates when acid drainage was involved.

Disasters

The greatest danger of tailings ponds is dam failure, with the most publicized failure in the U.S. being the failure of a coal slurry dam in the West Virginia Buffalo Creek Flood of 1972, which killed 125 people; other collapses include the Ok Tedi environmental disaster in New Guinea, which destroyed the fishery of the Ok Tedi River. On average, worldwide, there is one big accident involving a tailings dam each year.
Other disasters caused by tailings dam failures are, the 2000 Baia Mare cyanide spill and the Ajka alumina plant accident. In 2015, the iron ore tailings dam failure at the Germano mine complex in Minas Gerais, Brazil, was the country's biggest environmental disaster. The dam breach caused the death of 19 people due to flooding of tailings slime downstream and affected some 400 km of the Doce river system with toxic effluence and out into the Atlantic Ocean.

Human rights

Tailings deposits tend to be located in rural areas or near marginalized communities, such as indigenous communities. The Global Industry Standard on Tailings Management recommends that "a human rights due diligence process is required to identify and address those that are most at risk from a tailings facility or its potential failure."

Storage methods

Historically, tailings were disposed of in the most convenient manner, such as in downstream running water or down drains. Because of concerns about these sediments in the water and other issues, tailings ponds came into use. The sustainability challenge in the management of tailings and waste rock is to dispose of material, such that it is inert or, if not, stable and contained, to minimise water and energy inputs and the surface footprint of wastes and to move toward finding alternate uses.

Tailings dams and ponds

Bounded by impoundments, these dams typically use "local materials" including the tailings themselves, and may be considered embankment dams. Traditionally, the only option for tailings storage was to contain the tailings slurry with locally available earthen materials. This slurry is a dilute stream of the tailings solids within water that was sent to the tailings storage area. The modern tailings designer has a range of tailings products to choose from depending upon how much water is removed from the slurry prior to discharge. It is increasingly common for tailings storage facilities to require special barriers like bituminous geomembranes to contain liquid tailings slurries and prevent impact to the surrounding environment. The removal of water not only can create a better storage system in some cases but can also assist in water recovery which is a major issue as many mines are in arid regions. In a 1994 description of tailings impoundments, however, the U.S. EPA stated that dewatering methods may be prohibitively expensive except in special circumstances. Subaqueous storage of tailings has also been used.
Tailing ponds are areas of refused mining tailings where the waterborne refuse material is pumped into a pond to allow the sedimentation of solids from the water. The pond is generally impounded with a dam, and known as tailings impoundments or tailings dams. It was estimated in 2000 that there were about 3,500 active tailings impoundments in the world. The ponded water is of some benefit as it minimizes fine tailings from being transported by wind into populated areas where the toxic chemicals could be potentially hazardous to human health; however, it is also harmful to the environment. Tailing ponds are often somewhat dangerous because they attract wildlife such as waterfowl or caribou as they appear to be a natural pond, but they can be highly toxic and harmful to the health of these animals. Tailings ponds are used to store the waste made from separating minerals from rocks, or the slurry produced from tar sands mining. Tailings are sometimes mixed with other materials such as bentonite to form a thicker slurry that slows the release of impacted water to the environment.
There are many different subsets of this method, including valley impoundments, ring dikes, in-pit impoundments, and specially dug pits. The most common is the valley pond, which takes advantage of the natural topographical depression in the ground. Large earthen dams may be constructed and then filled with the tailings. Exhausted open pit mines may be refilled with tailings. In all instances, due consideration must be made to contamination of the underlying water table, among other issues. Dewatering is an important part of pond storage, as the tailings are added to the storage facility the water is removed – usually by draining into decant tower structures. The water removed can thus be reused in the processing cycle. Once a storage facility is filled and completed, the surface can be covered with topsoil and revegetation commenced. However, unless a non-permeable capping method is used, water that infiltrates into the storage facility will have to be continually pumped out into the future.