Metal foam
In materials science, a metal foam is a material or structure consisting of a solid metal with gas-filled pores comprising a large portion of the volume. The pores can be sealed or interconnected. The defining characteristic of metal foams is a high porosity: typically only 5–25% of the volume is the base metal. The strength of the material is due to the square–cube law.
Metal foams typically retain some physical properties of their base material. Foam made from non-flammable metal remains non-flammable and can generally be recycled as the base material. Its coefficient of thermal expansion is similar while thermal conductivity is likely reduced.
Definitions
Open-cell
Open-celled metal foam, also called metal sponge, can be used in heat exchangers, energy absorption, flow diffusion, scrubbers, flame arrestors, and lightweight optics. The high cost of the material generally limits its use to advanced technology, aerospace, and manufacturing.Fine-scale open-cell foams, with cells smaller than can be seen unaided, are used as high-temperature filters in the chemical industry.
Metal foams are used in compact heat exchangers to increase heat transfer at the cost of reduced pressure. However, their use permits substantial reduction in physical size and fabrication costs. Most models of these materials use idealized and periodic structures or averaged macroscopic properties.
Metal sponge has very large surface area per unit weight and catalysts are often formed into metal sponge, such as palladium black, platinum sponge, and spongy nickel. Metals such as osmium and palladium hydride are metaphorically called "metal sponges", but this term is in reference to their property of binding to hydrogen, rather than the physical structure.
Closed-cell
Closed-cell metal foam was first reported in 1926 by Meller in a French patent where foaming of light metals, either by inert gas injection or by blowing agent, was suggested. Two patents on sponge-like metal were issued to Benjamin Sosnik in 1948 and 1951 who applied mercury vapor to blow liquid aluminium.Closed-cell metal foams were developed in 1956 by John C. Elliott at Bjorksten Research Laboratories. Although the first prototypes were available in the 1950s, commercial production began in the 1990s by Shinko Wire company in Japan. Closed-cell metal foams are primarily used as an impact-absorbing material, similarly to the polymer foams in a bicycle helmet but for higher impact loads. Unlike many polymer foams, metal foams remain deformed after impact and can therefore only be deformed once. They are light and stiff and are frequently proposed as a lightweight structural material. However, they have not been widely used for this purpose.
Closed-cell foams retain the fire resistance and recycling potential of other metal foams, but add the property of flotation in water.
Stochastic foam
A foam is said to be stochastic when the porosity distribution is random. Most foams are stochastic because of the method of manufacture:- Foaming of liquid or solid metal
- Vapor deposition
- Direct or indirect random casting of a mold containing beads or matrix
Regular foam
Plates can be used as casting cores. The shape is customized for each application. This manufacturing method allows for "perfect" foam, so-called because it satisfies Plateau's laws and has conducting pores of the shape of a truncated octahedron Kelvin cell.
Image:Truncatedoctahedron.gif|thumb|right|Kelvin cell
Hybrid foam
Hybrid metal foams typically have a thin film on the underlying porous substrate. Coating metal foams with a different material has been shown to improve the mechanical properties of the metal foam, especially because they are prone to bending deformation mechanisms due to their cellular structure. The addition of a thin film can also improve other properties such as corrosion resistance and enable surface functionalization for catalytic flow processes.To fabricate hybrid metal foams, thin films are deposited onto a foam substrate with electrodeposition at room temperature. A two-electrode cell setup in a Watt's bath can be used. Recent studies have demonstrated issues with the uniformity of the thin-film due to the complex geometry of metal foams. Issues with uniformity have been addressed in more recent studies through the implementation of nanoparticle thin films, leading to improved mechanical and corrosion resistance properties.
Recent studies on hybrid foams have also been used to address non-renewable energy resources. Transition metal hybrid foams have previously been fabricated through a combination of electrodeposition and hydrogen bubbling processes to enhance the diffusivity of fluids through the porous material and improve the electrical properties for enhanced charge transfer. Thus, such foams can be used to make electrocatalytic water splitting processes more efficient.
Hybrid metal foams may have favorable conductive properties for flexible devices. Through the application of a thin layer of metal onto a porous polymer substrate via gas-phase deposition, researchers have been able to achieve high conductivity while maintaining the flexibility of the polymer matrix. Through cycling testing, it has been shown that hybrid foams are capable of surface deformation sensing. Future efforts seek to characterize the change in cross-linking and porosity of materials as deposition occurs. Additionally, the interaction or compatibility between different polymers and metals in foam ligands can be explored in order to get an improved understanding of their sensitivity to external forces. This would help improve resistance to compressive forces.
Manufacturing
Open-cell
Open cell foams are manufactured by foundry or powder metallurgy. In the powder method, "space holders" are used; as their name suggests, they occupy the pore spaces and channels. In casting processes, foam is cast with an open-celled polyurethane foam skeleton.Closed-cell
Foams are commonly made by injecting a gas or mixing a foaming agent into molten metal. Molten metal can be foamed by creating gas bubbles in the material. Normally, bubbles in molten metal are highly buoyant in the high-density liquid and rise quickly to the surface. This rise can be slowed by increasing the viscosity of the molten metal by adding ceramic powders or alloying elements to form stabilizing particles in the molten metal, or by other means. Molten metal can be foamed in one of three ways:- by injecting gas into the liquid metal from an external source;
- by causing gas formation in the liquid by admixing gas-releasing blowing agents with the molten metal;
- by causing the precipitation of gas that was previously dissolved in the molten metal.