Project Gemini


Project Gemini was the second United States human spaceflight program to fly. It was conducted after the first American crewed space program, Project Mercury, while the Apollo program was still in early development. Gemini was conceived in 1961 and concluded in 1966. The Gemini spacecraft carried a two-astronaut crew. Ten Gemini crews and 16 individual astronauts flew low Earth orbit missions during 1965 and 1966.
Gemini's objective was the development of space travel techniques to support the Apollo mission to land astronauts on the Moon. In doing so, it allowed the United States to catch up and overcome the lead in human spaceflight capability the Soviet Union had obtained in the early years of the Space Race, by demonstrating mission endurance up to just under 14 days, longer than the eight days required for a round trip to the Moon; methods of performing extravehicular activity without tiring; and the orbital maneuvers necessary to achieve rendezvous and docking with another spacecraft. This left Apollo free to pursue its prime mission without spending time developing these techniques.
All Gemini flights were launched from Launch Complex 19 at Cape Kennedy Air Force Station in Florida. Their launch vehicle was the Titan II GLV, a modified intercontinental ballistic missile. Gemini was the first program to use the newly built Mission Control Center at the Houston Manned Spacecraft Center for flight control. The project also used the Agena target vehicle, a modified Atlas-Agena upper stage, used to develop and practice orbital rendezvous and docking techniques.
The astronaut corps that supported Project Gemini included the "Mercury Seven", "The New Nine", and "The Fourteen". During the program, three astronauts died in air crashes during training, including both members of the prime crew for Gemini 9. The backup crew flew this mission.
Gemini was robust enough that the United States Air Force planned to use it for the Manned Orbital Laboratory program, which was later canceled. Gemini's chief designer, Jim Chamberlin, also made detailed plans for cislunar and lunar landing missions in late 1961. He believed Gemini spacecraft could fly in lunar operations before Project Apollo, and cost less. NASA's administration did not approve those plans. In 1969, Lukas Bingham proposed a "Big Gemini" that could have been used to shuttle up to 12 astronauts to the planned space stations in the Apollo Applications Project. The only AAP project funded was Skylab which used existing spacecraft and hardwarethereby eliminating the need for Big Gemini.

Pronunciation

The constellation for which the project was named is commonly pronounced, the last syllable rhyming with eye. However, staff of the Manned Spacecraft Center, including the astronauts, tended to pronounce the name, rhyming with knee. NASA's public affairs office then issued a statement in 1965 declaring "Jeh'-mih-nee" the "official" pronunciation. Gus Grissom, acting as Houston capsule communicator when Ed White performed his spacewalk on Gemini 4, is heard on flight recordings pronouncing the spacecraft's call sign "Jeh-mih-nee 4", and the NASA pronunciation is used in the 2018 film First Man.

Program origins and objectives

The Apollo program was conceived in early 1960 as a three-man spacecraft to follow Project Mercury. Jim Chamberlin, the head of engineering at the Space Task Group, was assigned in February 1961 to start working on a bridge program between Mercury and Apollo. He presented two initial versions of a two-man spacecraft, then designated Mercury Mark II, at a NASA retreat at Wallops Island in March 1961. Scale models were shown in July 1961 at the McDonnell Aircraft Corporation's offices in St. Louis.
After Apollo was chartered to land men on the Moon by President John F. Kennedy on May 25, 1961, it became evident to NASA officials that a follow-on to the Mercury program was required to develop certain spaceflight capabilities in support of Apollo. NASA approved the two-man / two-vehicle program rechristened Project Gemini, in reference to the third constellation of the Zodiac with its twin stars Castor and Pollux, on December 7, 1961. McDonnell Aircraft was contracted to build it on December 22, 1961. The program was publicly announced on January 3, 1962, with these major objectives:
  • To demonstrate endurance of humans and equipment in spaceflight for extended periods, at least eight days required for a Moon landing, to a maximum of two weeks
  • To effect rendezvous and docking with another vehicle, and to maneuver the combined spacecraft using the propulsion system of the target vehicle
  • To demonstrate Extra-Vehicular Activity, or space-"walks" outside the protection of the spacecraft, and to evaluate the astronauts' ability to perform tasks there
  • To perfect techniques of atmospheric reentry and touchdown at a pre-selected location on land

    Team

Chamberlin designed the Gemini capsule, which carried a crew of two. He was previously the chief aerodynamicist on Avro Canada's CF-105 Arrow fighter interceptor program. Chamberlin joined NASA along with 25 senior Avro engineers after cancellation of the Canadian Arrow program, and became head of the U.S. Space Task Group's engineering division in charge of Gemini. The prime contractor was McDonnell Aircraft Corporation, which was also the prime contractor for the Project Mercury capsule.
Astronaut Gus Grissom was heavily involved in the development and design of the Gemini spacecraft. What other Mercury astronauts dubbed "Gusmobile" was so designed around Grissom's 5'6" body that, when NASA discovered in 1963 that 14 of 16 astronauts would not fit in the spacecraft, the interior had to be redesigned. Grissom wrote in his posthumous 1968 book Gemini! that the realization of Project Mercury's end and the unlikelihood of his having another flight in that program prompted him to focus all his efforts on the upcoming Gemini program.
The Gemini program was managed by the Manned Spacecraft Center, located in Houston, Texas, under direction of the Office of Manned Space Flight, NASA Headquarters, Washington, D.C. Dr. George E. Mueller, Associate Administrator of NASA for Manned Space Flight, served as acting director of the Gemini program. William C. Schneider, Deputy Director of Manned Space Flight for Mission Operations served as mission director on all Gemini flights beginning with Gemini 6A.
Guenter Wendt was a McDonnell engineer who supervised launch preparations for both the Mercury and Gemini programs and would go on to do the same when the Apollo program launched crews. His team was responsible for completion of the complex pad close-out procedures just prior to spacecraft launch, and he was the last person the astronauts would see prior to closing the hatch. The astronauts appreciated his taking absolute authority over, and responsibility for, the condition of the spacecraft and developed a good-humored rapport with him.

Spacecraft

In 1961, NASA selected McDonnell Aircraft, which was the prime contractor for the Project Mercury capsule, to build the Gemini capsule, the first of which was delivered in 1963. The spacecraft was long and wide, with a launch weight varying from.
The Gemini crew capsule was essentially an enlarged version of the Mercury capsule. Unlike Mercury, the retrorockets, electrical power, propulsion systems, oxygen, and water were located in a detachable Adapter Module behind the Reentry Module which would burn up on reentry. A major design improvement in Gemini was to locate all internal spacecraft systems in modular components, which could be independently tested and replaced when necessary, without removing or disturbing other already tested components.

Reentry module

Many components in the capsule itself were accessible through their respective small access doors. Unlike Mercury, Gemini used completely solid-state electronics, and its modular design made it easy to repair.
Gemini's emergency launch escape system did not use an escape tower powered by a solid-fuel rocket, but instead used aircraft-style ejection seats. The tower was heavy and complicated, and NASA engineers reasoned that they could do away with it as the Titan II's hypergolic propellants would burn immediately on contact. A Titan II booster explosion had a smaller blast effect and flame than on the cryogenically fueled Atlas and Saturn. Ejection seats were sufficient to separate the astronauts from a malfunctioning launch vehicle. At higher altitudes, where the ejection seats could not be used, the astronauts would return to Earth inside the spacecraft, which would separate from the launch vehicle.
The main proponent of using ejection seats was Chamberlin, who had never liked the Mercury escape tower and wished to use a simpler alternative that would also reduce weight. He reviewed several films of Atlas and Titan II ICBM failures, which he used to estimate the approximate size of a fireball produced by an exploding launch vehicle and from this he gauged that the Titan II would produce a much smaller explosion, thus the spacecraft could get away with ejection seats.
Maxime Faget, the designer of the Mercury LES, was on the other hand less-than-enthusiastic about this setup. Aside from the possibility of the ejection seats seriously injuring the astronauts, they would also only be usable for about 40 seconds after liftoff, by which point the booster would be attaining Mach 1 speed and ejection would no longer be possible. He was also concerned about the astronauts being launched through the Titan's exhaust plume if they ejected in-flight and later added, "The best thing about Gemini was that they never had to make an escape."
The Gemini ejection system was never tested with the Gemini cabin pressurized with pure oxygen, as it was prior to launch. In January 1967, the fatal Apollo 1 fire demonstrated that pressurizing a spacecraft with pure oxygen created an extremely dangerous fire hazard. In a 1997 oral history, astronaut Thomas P. Stafford commented on the Gemini 6 launch abort in December 1965, when he and command pilot Wally Schirra nearly ejected from the spacecraft:
Gemini was the first astronaut-carrying spacecraft to include an onboard computer, the Gemini Guidance Computer, to facilitate management and control of mission maneuvers. This computer, sometimes called the Gemini Spacecraft On-Board Computer, was very similar to the Saturn Launch Vehicle Digital Computer. The Gemini Guidance Computer weighed. Its core memory had 4096 addresses, each containing a 39-bit word composed of three 13-bit "syllables". All numeric data was 26-bit two's-complement integers, either stored in the first two syllables of a word or in the accumulator. Instructions could go in any syllable.
Unlike Mercury, Gemini used in-flight radar and an artificial horizon, similar to those used in the aviation industry. Like Mercury, Gemini used a joystick to give the astronauts manual control of yaw, pitch, and roll. Gemini added control of the spacecraft's translation with a pair of T-shaped handles. Translation control enabled rendezvous and docking, and crew control of the flight path. The same controller types were also used in the Apollo spacecraft.
The original intention for Gemini was to land on solid ground instead of at sea, using a Rogallo wing rather than a parachute, with the crew seated upright controlling the forward motion of the craft. To facilitate this, the airfoil did not attach just to the nose of the craft, but to an additional attachment point for balance near the heat shield. This cord was covered by a strip of metal which ran between the twin hatches. This design was ultimately dropped, and parachutes were used to make a sea landing as in Mercury. The capsule was suspended at an angle closer to horizontal, so that a side of the heat shield contacted the water first. This eliminated the need for the landing bag cushion used in the Mercury capsule.