Manchester Baby


The Manchester Baby, also called the Small-Scale Experimental Machine, was the first electronic stored-program computer. It was built at the Victoria University of Manchester by Frederic C. Williams, Tom Kilburn, and Geoff Tootill, and ran its first program on 21 June 1948.
The Baby was not intended to be a practical computing engine, but was instead designed as a testbed for the Williams tube, the first truly random-access memory. Described as "small and primitive" 50 years after its creation, it was the first working machine to contain all the elements essential to a modern electronic digital computer. As soon as the Baby had demonstrated the feasibility of its design, a project was initiated at the university to develop it into a full-scale operational machine, the. The Mark 1 in turn quickly became the prototype for the Ferranti Mark 1, the world's first commercially available general-purpose computer.
The Baby had a 32-bit word length and a memory of 32 words. As it was designed to be the simplest possible stored-program computer, the only arithmetic operations implemented in hardware were subtraction and negation; other arithmetic operations were implemented in software. The first of three programs written for the machine calculated the highest proper divisor of 218, by testing every integer from 218 downwards. This algorithm would take a long time to execute—and so prove the computer's reliability, as division was implemented by repeated subtraction of the divisor. The program consisted of 17 instructions and ran for about 52 minutes before reaching the correct answer of 131,072, after the Baby had performed about 3.5 million operations.

Background

The first design for a program-controlled computer was Charles Babbage's Analytical Engine in the 1830s, with Ada Lovelace conceiving the idea of the first theoretical program to calculate Bernoulli numbers. A century later, in 1936, mathematician Alan Turing published his description of what became known as a Turing machine, a theoretical concept intended to explore the limits of mechanical computation. Turing was not imagining a physical machine, but a person he called a "computer", who acted according to the instructions provided by a tape on which symbols could be read and written sequentially as the tape moved under a tape head. Turing proved that if an algorithm can be written to solve a mathematical problem, then a Turing machine can execute that algorithm.
Konrad Zuse's Z3 was the world's first working programmable, fully automatic computer, with binary digital arithmetic logic, but it lacked the conditional branching of a Turing machine. On 12 May 1941, the Z3 was successfully presented to an audience of scientists of the Deutsche Versuchsanstalt für Luftfahrt in Berlin. The Z3 stored its program on an external tape, but it was electromechanical rather than electronic. The earliest electronic computing devices were the Atanasoff–Berry computer, which was successfully tested in 1942, and the Colossus of 1943, but neither was a stored-program machine.
The ENIAC was the first automatic computer that was both electronic and general-purpose. It was Turing complete, with conditional branching, and programmable to solve a wide range of problems, but its program was held in the state of switches in patch cords, rather than machine-changeable memory, and it could take several days to reprogram. Researchers such as Turing and Zuse investigated the idea of using the computer's memory to hold the program as well as the data it was working on, and it was mathematician John von Neumann who wrote a widely distributed paper describing that computer architecture, still used in almost all computers.
The construction of a von Neumann computer depended on the availability of a suitable memory device on which to store the program. During the Second World War researchers working on the problem of removing the clutter from radar signals had developed a form of delay-line memory, the first practical application of which was the mercury delay line, developed by J. Presper Eckert. Radar transmitters send out regular brief pulses of radio energy, the reflections from which are displayed on a CRT screen. As operators are usually interested only in moving targets, it was desirable to filter out any distracting reflections from stationary objects. The filtering was achieved by comparing each received pulse with the previous pulse, and rejecting both if they were identical, leaving a signal containing only the images of any moving objects. To store each received pulse for later comparison it was passed through a transmission line, delaying it by exactly the time between transmitted pulses.
Turing joined the National Physical Laboratory in October 1945, by which time scientists within the Ministry of Supply had concluded that Britain needed a National Mathematical Laboratory to co-ordinate machine-aided computation. A Mathematics Division was set up at the NPL, and on 19 February 1946 Turing presented a paper outlining his design for an electronic stored-program computer to be known as the Automatic Computing Engine. This was one of several projects set up in the years following the Second World War with the aim of constructing a stored-program computer. At about the same time, EDVAC was under development at the University of Pennsylvania's Moore School of Electrical Engineering, and the University of Cambridge Mathematical Laboratory was working on EDSAC.
The NPL did not have the expertise to build a machine like ACE, so they contacted Tommy Flowers at the General Post Office's Dollis Hill Research Laboratory. Flowers, the designer of Colossus, the world's first programmable electronic computer, was committed elsewhere and was unable to take part in the project, although his team did build some mercury delay lines for ACE. The Telecommunications Research Establishment was also approached for assistance, as was Maurice Wilkes at the University of Cambridge Mathematical Laboratory.
The government department responsible for the NPL decided that, of all the work being carried out by the TRE on its behalf, ACE was to be given the top priority. NPL's decision led to a visit by the superintendent of the TRE's Physics Division on 22 November 1946, accompanied by Frederic C. Williams and A. M. Uttley, also from the TRE. Williams led a TRE development group working on CRT stores for radar applications, as an alternative to delay lines. Williams was not available to work on the ACE because he had already accepted a professorship at the Victoria University of Manchester, and most of his circuit technicians were in the process of being transferred to the Department of Atomic Energy. The TRE agreed to second a small number of technicians to work under Williams' direction at the university, and to support another small group working with Uttley at the TRE.

Williams–Kilburn tube

Although some early computers such as EDSAC, inspired by the design of EDVAC, later made successful use of mercury delay-line memory, the technology had several drawbacks: it was heavy, it was expensive, and it did not allow data to be accessed randomly. In addition, because data was stored as a sequence of acoustic waves propagated through a mercury column, the device's temperature had to be very carefully controlled, as the velocity of sound through a medium varies with its temperature. Williams had seen an experiment at Bell Labs demonstrating the effectiveness of cathode-ray tubes as an alternative to the delay line for removing ground echoes from radar signals. While working at the TRE, shortly before he joined the University of Manchester in December 1946, he and Tom Kilburn had developed a form of electronic memory known as the Williams tube or Williams–Kilburn tube, based on a standard CRT: the first electronic random-access digital storage device. The Baby was designed to show that it was a practical storage device by demonstrating that data held within it could be read and written reliably at a speed suitable for use in a computer.
For use in a binary digital computer, the tube had to be capable of storing either one of two states at each of its memory locations, corresponding to the binary digits 0 and 1. It exploited the positive or negative electric charge generated by displaying either a dash or a dot at any position on the CRT screen, a phenomenon known as secondary emission. A dash generated a positive charge, and a dot a negative charge, either of which could be picked up by a detector plate in front of the screen; a negative charge represented 0, and a positive charge 1. The charge dissipated in about 0.2 seconds, but it could be automatically refreshed from the data picked up by the detector.
The Williams tube used in Baby was based on the CV1131, a commercially available diameter CRT, but a smaller tube, the CV1097, was used in the Mark I.

Genesis of the project

After developing the Colossus computer for code breaking at Bletchley Park during World War II, Max Newman was committed to the development of a computer incorporating both Alan Turing's mathematical concepts and the stored-program concept that had been described by John von Neumann. In 1945, he was appointed to the Fielden Chair of Pure Mathematics at Manchester University; he took his Colossus-project colleagues Jack Good and David Rees to Manchester with him, and there they recruited F. C. Williams to be the "circuit man" for a new computer project for which he had secured funding from the Royal Society.
Following his appointment to the Chair of Electrical Engineering at Manchester University, Williams recruited his TRE colleague Tom Kilburn on secondment. By the autumn of 1947 the pair had increased the storage capacity of the Williams tube from one bit to 2,048, arranged in a 64 by 32-bit array, and demonstrated that it was able to store those bits for four hours. Engineer Geoff Tootill joined the team on loan from TRE in September 1947, and remained on secondment until April 1949.
Kilburn had a hard time recalling the influences on his machine design:
Jack Copeland explains that Kilburn's first accumulator-free design was based on inputs from Turing, but that he later switched to an accumulator-based machine of the sort advocated by von Neumann, as written up and taught to him by Jack Good and Max Newman.
The Baby's seven operation instruction set was approximately a subset of the twelve operation instruction set proposed in 1947 by Jack Good, in the first known document to use the term "Baby" for this machine. Good did not include a "halt" instruction, and his proposed conditional jump instruction was more complicated than what the Baby implemented.