Magnetocaloric effect
The magnetocaloric effect is a scientific phenomenon in which certain materials warm up when a magnetic field is applied. The warming is due to changes in the internal state of the material, which releases heat. When the magnetic field is removed, the material returns to its original state, reabsorbing the heat, and returning to original temperature. This can be used to achieve refrigeration, by allowing the material to radiate away its heat while in the magnetized hot state. Removing the magnetism, the material then cools to below its original temperature.
The effect was first observed in 1881 by German physicist Emil Warburg, followed by French and Swiss physicists Pierre Weiss and Auguste Piccard in 1917. The fundamental principle was suggested by American chemists Peter Debye and William Giauque. The first working magnetic refrigerators were constructed by several groups beginning in 1933. Magnetic refrigeration was the first method developed for cooling below about 0.3 K.
The magnetocaloric effect can be used to attain extremely low temperatures, as well as the ranges used in common refrigerators.
History
The effect was first observed by German physicist Emil Warburg in 1881 Subsequently by French physicist Pierre Weiss and Swiss physicist Auguste Piccard in 1917.Major advances first appeared in the late 1920s when cooling via adiabatic demagnetization was independently proposed by chemistry Nobel Laureates Peter Debye in 1926 and William F. Giauque in 1927.
It was first demonstrated experimentally by Giauque and his colleague D. P. MacDougall in 1933 for cryogenic purposes when they reached 0.25 K. Between 1933 and 1997, advances in MCE cooling occurred.
In 1997, the first near room-temperature proof of concept magnetic refrigerator was demonstrated by Karl A. Gschneidner, Jr. by the Iowa State University at Ames Laboratory. This event attracted interest from scientists and companies worldwide who started developing new kinds of room temperature materials and magnetic refrigerator designs.
A major breakthrough came 2002 when a group at the University of Amsterdam demonstrated the giant magnetocaloric effect in MnFe alloys that are based on abundant materials.
Refrigerators based on the magnetocaloric effect have been demonstrated in laboratories, using magnetic fields starting at 0.6 T up to 10 T. Magnetic fields above 2 T are difficult to produce with permanent magnets and are produced by a superconducting magnet.
Room temperature devices
Recent research has focused on near room temperature. Constructed examples of room temperature magnetic refrigerators include:In one example, Prof. Karl A. Gschneidner, Jr. unveiled a proof of concept magnetic refrigerator near room temperature on February 20, 1997. He also announced the discovery of the GMCE in on June 9, 1997. Since then, hundreds of peer-reviewed articles have been written describing materials exhibiting magnetocaloric effects.
Process
The MCE is a magneto-thermodynamic phenomenon in which a temperature change of a suitable material is caused by exposing the material to a changing magnetic field. This is also known by low temperature physicists as adiabatic demagnetization. In that part of the refrigeration process, a decrease in the strength of an externally applied magnetic field allows the magnetic domains of a magnetocaloric material to become disoriented from the magnetic field by the agitating action of the thermal energy present in the material. If the material is isolated so that no energy is allowed to migrate into the material during this time, the temperature drops as the domains absorb the thermal energy to perform their reorientation. The randomization of the domains occurs in a similar fashion to the randomization at the Curie temperature of a ferromagnetic material, except that magnetic dipoles overcome a decreasing external magnetic field while energy remains constant, instead of magnetic domains being disrupted from internal ferromagnetism as energy is added.One of the most notable examples of the magnetocaloric effect is in the chemical element gadolinium and some of its alloys. Gadolinium's temperature increases when it enters certain magnetic fields. When it leaves the magnetic field, the temperature drops. The effect is considerably stronger for the gadolinium alloy. Praseodymium alloyed with nickel has such a strong magnetocaloric effect that it has allowed scientists to approach to within one millikelvin, one thousandth of a degree of absolute zero.
Equation
The magnetocaloric effect can be quantified with the following equation:where is the adiabatic change in temperature of the magnetic system around temperature ; is the applied external magnetic field; is the heat capacity of the working magnet ; and is the magnetization of the refrigerant.
From the equation we can see that the magnetocaloric effect can be enhanced by:
- a large field variation
- a magnet material with a small heat capacity
- a magnet with large changes in net magnetization vs. temperature, at constant magnetic field
This implies that the absolute change in the magnet's entropy determines the possible magnitude of the adiabatic temperature change under a thermodynamic cycle of magnetic field variation.
Thermodynamic cycle
The cycle is performed as a refrigeration cycle that is analogous to the Carnot refrigeration cycle, but with increases and decreases in magnetic field strength instead of increases and decreases in pressure. It can be described at a starting point whereby the chosen working substance is introduced into a magnetic field, i.e., the magnetic flux density is increased. The working material is the refrigerant, and starts in thermal equilibrium with the refrigerated environment.- Adiabatic magnetization: A magnetocaloric substance is placed in an insulated environment. The increasing external magnetic field causes the magnetic dipoles of the atoms to align, thereby decreasing the material's magnetic entropy and heat capacity. Since overall energy is not lost and therefore total entropy is not reduced, the net result is that the substance is heated.
- Isomagnetic enthalpic transfer: This added heat can then be removed by a fluid or gas — gaseous or liquid helium, for example. The magnetic field is held constant to prevent the dipoles from reabsorbing the heat. Once sufficiently cooled, the magnetocaloric substance and the coolant are separated.
- : The substance is returned to another adiabatic condition so the total entropy remains constant. However, this time the magnetic field is decreased, the thermal energy causes the magnetic moments to overcome the field, and thus the sample cools, i.e., an adiabatic temperature change. Energy transfers from thermal entropy to magnetic entropy, measuring the disorder of the magnetic dipoles.
- Isomagnetic entropic transfer: The magnetic field is held constant to prevent the material from reheating. The material is placed in thermal contact with the environment to be refrigerated. Because the working material is cooler than the refrigerated environment, heat energy migrates into the working material.
Applied technique
The basic operating principle of an adiabatic demagnetization refrigerator is the use of a strong magnetic field to control the entropy of a sample of material, often called the "refrigerant". Magnetic field constrains the orientation of magnetic dipoles in the refrigerant. The stronger the magnetic field, the more aligned the dipoles are, corresponding to lower entropy and heat capacity because the material has lost some of its internal degrees of freedom. If the refrigerant is kept at a constant temperature through thermal contact with a heat sink while the magnetic field is switched on, the refrigerant must lose some energy because it is equilibrated with the heat sink. When the magnetic field is subsequently switched off, the heat capacity of the refrigerant rises again because the degrees of freedom associated with orientation of the dipoles are once again liberated, pulling their share of equipartitioned energy from the motion of the molecules, thereby lowering the overall temperature of a system with decreased energy. Since the system is now insulated when the magnetic field is switched off, the process is adiabatic, i.e., the system can no longer exchange energy with its surroundings, and its temperature decreases below its initial value, that of the heat sink.The operation of a standard ADR proceeds roughly as follows. First, a strong magnetic field is applied to the refrigerant, forcing its various magnetic dipoles to align and putting these degrees of freedom of the refrigerant into a state of lowered entropy. The heat sink then absorbs the heat released by the refrigerant due to its loss of entropy. Thermal contact with the heat sink is then broken so that the system is insulated, and the magnetic field is switched off, increasing the heat capacity of the refrigerant, thus decreasing its temperature below the temperature of the heat sink. In practice, the magnetic field is decreased slowly in order to provide continuous cooling and keep the sample at an approximately constant low temperature. Once the field falls to zero or to some low limiting value determined by the properties of the refrigerant, the cooling power of the ADR vanishes, and heat leaks will cause the refrigerant to warm up.
Working materials
The MCE is an intrinsic property of a magnetic solid. This thermal response of a solid to the application or removal of magnetic fields is maximized when the solid is near its magnetic ordering temperature. Thus, the materials considered for magnetic refrigeration devices should be magnetic materials with a magnetic phase transition temperature near the temperature region of interest. For refrigerators that could be used in the home, this temperature is room temperature. The temperature change can be further increased when the order-parameter of the phase transition changes strongly within the temperature range of interest.The magnitudes of the magnetic entropy and the adiabatic temperature changes are strongly dependent upon the magnetic ordering process. The magnitude is generally small in antiferromagnets, ferrimagnets and spin glass systems but can be much larger for ferromagnets that undergo a magnetic phase transition. First order phase transitions are characterized by a discontinuity in the magnetization changes with temperature, resulting in a latent heat. Second order phase transitions do not have this latent heat associated with the phase transition.
In the late 1990s Pecharksy and Gschneidner reported a magnetic entropy change in that was about 50% larger than that reported for Gd metal, which had the largest known magnetic entropy change at the time. This giant magnetocaloric effect occurred at 270 K, which is lower than that of Gd. Since the MCE occurs below room temperature these materials would not be suitable for refrigerators operating at room temperature. Since then other alloys have also demonstrated the giant magnetocaloric effect. These include, and alloys. Gadolinium and its alloys undergo second-order phase transitions that have no magnetic or thermal hysteresis. However, the use of rare earth elements makes these materials very expensive.
Heusler alloys are also promising candidates for magnetic cooling applications because they have Curie temperatures near room temperature and, depending on composition, can have martensitic phase transformations near room temperature. These materials exhibit the magnetic shape memory effect and can also be used as actuators, energy harvesting devices, and sensors. When the martensitic transformation temperature and the Curie temperature are the same the magnitude of the magnetic entropy change is the largest. In February 2014, GE announced the development of a functional Ni-Mn-based magnetic refrigerator.
The development of this technology is very material-dependent and will likely not replace vapor-compression refrigeration without significantly improved materials that are cheap, abundant, and exhibit much larger magnetocaloric effects over a larger range of temperatures. Such materials need to show significant temperature changes under a field of two tesla or less, so that permanent magnets can be used for the production of the magnetic field.