Animal locomotion
In ethology, animal locomotion is any of a variety of methods that animals use to move from one place to another. Some modes of locomotion are self-propelled, e.g., running, swimming, jumping, flying, hopping, soaring and gliding. Many animal species depend on their environment for transportation, a type of mobility called passive locomotion, e.g., sailing, kiting, rolling or riding other animals.
Animals move for a variety of reasons, such as to find food, a mate, a suitable microhabitat, or to escape predators. For many animals, the ability to move is essential for survival and, as a result, natural selection has shaped the locomotion methods and mechanisms used by moving organisms. For example, migratory animals that travel vast distances typically have a locomotion mechanism that costs very little energy per unit distance, whereas non-migratory animals that must frequently move quickly to escape predators are likely to have energetically costly, but very fast, locomotion.
The anatomical structures that animals use for movement, including cilia, legs, wings, arms, fins, or tails are sometimes referred to as locomotory organs or locomotory structures.
Etymology
The term "locomotion" is formed in English from Latin loco "from a place" + motio "motion, a moving".The movement of whole body is called locomotion
Aquatic
Swimming
In water, staying afloat is possible using buoyancy. If an animal's body is less dense than water, it can stay afloat. This requires little energy to maintain a vertical position, but requires more energy for locomotion in the horizontal plane compared to less buoyant animals. The drag encountered in water is much greater than in air. Morphology is therefore important for efficient locomotion, which is in most cases essential for basic functions such as catching prey. A fusiform, torpedo-like body form is seen in many aquatic animals, though the mechanisms they use for locomotion are diverse.The primary means by which fish generate thrust is by oscillating the body from side-to-side, the resulting wave motion ending at a large tail fin. Finer control, such as for slow movements, is often achieved with thrust from pectoral fins. Some fish, e.g. the spotted ratfish and batiform fish use their pectoral fins as the primary means of locomotion, sometimes termed labriform swimming. Marine mammals oscillate their body in an up-and-down direction.
Other animals, e.g. penguins, diving ducks, move underwater in a manner which has been termed "aquatic flying". Some fish propel themselves without a wave motion of the body, as in the slow-moving seahorses and Gymnotus.
Other animals, such as cephalopods, use jet propulsion to travel fast, taking in water then squirting it back out in an explosive burst. Other swimming animals may rely predominantly on their limbs, much as humans do when swimming. Though life on land originated from the seas, terrestrial animals have returned to an aquatic lifestyle on several occasions, such as the fully aquatic cetaceans, now very distinct from their terrestrial ancestors.
Dolphins sometimes ride on the bow waves created by boats or surf on naturally breaking waves.
Benthic
locomotion is movement by animals that live on, in, or near the bottom of aquatic environments. In the sea, many animals walk over the seabed. Echinoderms primarily use their tube feet to move about. The tube feet typically have a tip shaped like a suction pad that can create a vacuum through contraction of muscles. This, along with some stickiness from the secretion of mucus, provides adhesion. Waves of tube feet contractions and relaxations move along the adherent surface and the animal moves slowly along. Some sea urchins also use their spines for benthic locomotion.Crabs typically walk sideways. This is because of the articulation of the legs, which makes a sidelong gait more efficient. However, some crabs walk forwards or backwards, including raninids, Libinia emarginata and Mictyris platycheles. Some crabs, notably the Portunidae and Matutidae, are also capable of swimming, the Portunidae especially so as their last pair of walking legs are flattened into swimming paddles.
A stomatopod, Nannosquilla decemspinosa, can escape by rolling itself into a self-propelled wheel and somersault backwards at a speed of 72 rpm. They can travel more than 2 m using this unusual method of locomotion.
Aquatic surface
Velella, the by-the-wind sailor, is a cnidarian with no means of propulsion other than sailing. A small rigid sail projects into the air and catches the wind. Velella sails always align along the direction of the wind where the sail may act as an aerofoil, so that the animals tend to sail downwind at a small angle to the wind.While larger animals such as ducks can move on water by floating, some small animals move across it without breaking through the surface. This surface locomotion takes advantage of the surface tension of water. Animals that move in such a way include the water strider. Water striders have legs that are hydrophobic, preventing them from interfering with the structure of water. Another form of locomotion is used by the basilisk lizard.
Aerial
Active flight
Gravity is the primary obstacle to flight. Because it is impossible for any organism to have a density as low as that of air, flying animals must generate enough lift to ascend and remain airborne. One way to achieve this is with wings, which when moved through the air generate an upward lift force on the animal's body. Flying animals must be very light to achieve flight, the largest living flying animals being birds of around 20 kilograms. Other structural adaptations of flying animals include reduced and redistributed body weight, fusiform shape and powerful flight muscles; there may also be physiological adaptations. Active flight has independently evolved at least four times, in the insects, pterosaurs, birds, and bats. Insects were the first taxon to evolve flight, approximately 400 million years ago, followed by pterosaurs approximately 220 mya, birds approximately 160 mya, then bats about 60 mya.Gliding
Rather than active flight, some arboreal animals reduce their rate of falling by gliding. Gliding is heavier-than-air flight without the use of thrust; the term "volplaning" also refers to this mode of flight in animals. This mode of flight involves flying a greater distance horizontally than vertically and therefore can be distinguished from a simple descent like a parachute. Gliding has evolved on more occasions than active flight. There are examples of gliding animals in several major taxonomic classes such as the invertebrates, reptiles, amphibians, mammals.Some aquatic animals also regularly use gliding, for example, flying fish, octopus and squid. The flights of flying fish are typically around 50 meters, though they can use updrafts at the leading edge of waves to cover distances of up to. To glide upward out of the water, a flying fish moves its tail up to 70 times per second.
Several oceanic squid, such as the Pacific flying squid, leap out of the water to escape predators, an adaptation similar to that of flying fish. Smaller squids fly in shoals, and have been observed to cover distances as long as 50 m. Small fins towards the back of the mantle help stabilize the motion of flight. They exit the water by expelling water out of their funnel, indeed some squid have been observed to continue jetting water while airborne providing thrust even after leaving the water. This may make flying squid the only animals with jet-propelled aerial locomotion. The neon flying squid has been observed to glide for distances over, at speeds of up to.
Soaring
Soaring birds can maintain flight without wing flapping, using rising air currents. Many gliding birds are able to "lock" their extended wings by means of a specialized tendon. Soaring birds may alternate glides with periods of soaring in rising air. Five principal types of lift are used: thermals, ridge lift, lee waves, convergences and dynamic soaring.Examples of soaring flight by birds are the use of:
- Thermals and convergences by raptors such as vultures
- Ridge lift by gulls near cliffs
- Wave lift by migrating birds
- Dynamic effects near the surface of the sea by albatrosses
Ballooning