Inverse function
In mathematics, the inverse function of a function is a function that undoes the operation of. The inverse of exists if and only if is bijective, and if it exists, is denoted by
For a function, its inverse admits an explicit description: it sends each element to the unique element such that.
As an example, consider the real-valued function of a real variable given by. One can think of as the function which multiplies its input by 5 then subtracts 7 from the result. To undo this, one adds 7 to the input, then divides the result by 5. Therefore, the inverse of is the function defined by
Definitions
Let be a function whose domain is the set, and whose codomain is the set. Then is invertible if there exists a function from to such that for all and for all.If is invertible, then there is exactly one function satisfying this property. The function is called the inverse of, and is usually denoted as, a notation introduced by John Frederick William Herschel in 1813.
The function is invertible if and only if it is bijective. This is because the condition for all implies that is injective, and the condition for all implies that is surjective.
The inverse function to can be explicitly described as the function
Inverses and composition
Recall that if is an invertible function with domain and codomain, thenUsing the composition of functions, this statement can be rewritten to the following equations between functions:
where is the identity function on the set ; that is, the function that leaves its argument unchanged. In category theory, this statement is used as the definition of an inverse morphism.
Considering function composition helps to understand the notation. Repeatedly composing a function with itself is called iteration. If is applied times, starting with the value, then this is written as ; so, etc. Since, composing and yields, "undoing" the effect of one application of.
Notation
While the notation might be misunderstood, certainly denotes the multiplicative inverse of and has nothing to do with the inverse function of. The notation might be used for the inverse function to avoid ambiguity with the multiplicative inverse.In keeping with the general notation, some English authors use expressions like to denote the inverse of the sine function applied to . Other authors feel that this may be confused with the notation for the multiplicative inverse of, which can be denoted as. To avoid any confusion, an inverse trigonometric function is often indicated by the prefix "arc". For instance, the inverse of the sine function is typically called the arcsine function, written as. Similarly, the inverse of a hyperbolic function is indicated by the prefix "ar". For instance, the inverse of the hyperbolic sine function is typically written as. The expressions like can still be useful to distinguish the multivalued inverse from the partial inverse:. Other inverse special functions are sometimes prefixed with the prefix "inv", if the ambiguity of the notation should be avoided.
Examples
Squaring and square root functions
The function given by is not injective because for all. Therefore, is not invertible.If the domain of the function is restricted to the nonnegative reals, that is, we take the function with the same rule as before, then the function is bijective and so, invertible. The inverse function here is called the square root function and is denoted by.
Standard inverse functions
The following table shows several standard functions and their inverses:| Function | Inverse | Notes |
| integer ; if is even | ||
| and and | ||
| and | ||
| trigonometric functions | inverse trigonometric functions | various restrictions |
| hyperbolic functions | inverse hyperbolic functions | various restrictions |
| logistic function | logit | - |
Formula for the inverse
Many functions given by algebraic formulas possess a formula for their inverse. This is because the inverse of an invertible function has an explicit description asThis allows one to easily determine inverses of many functions that are given by algebraic formulas. For example, if is the function
then to determine for a real number, one must find the unique real number such that. This equation can be solved:
Thus the inverse function is given by the formula
Sometimes, the inverse of a function cannot be expressed by a closed-form formula. For example, if is the function
then is a bijection, and therefore possesses an inverse function. The formula for this inverse has an expression as an infinite sum:
Properties
Since a function is a special type of binary relation, many of the properties of an inverse function correspond to properties of converse relations.Uniqueness
If an inverse function exists for a given function, then it is unique. This follows since the inverse function must be the converse relation, which is completely determined by.Symmetry
There is a symmetry between a function and its inverse. Specifically, if is an invertible function with domain and codomain, then its inverse has domain and image, and the inverse of is the original function. In symbols, for functions and,This statement is a consequence of the implication that for to be invertible it must be bijective. The involutory nature of the inverse can be concisely expressed by
Image:Composition of Inverses.png|thumb|right|240px|The inverse of is.
The inverse of a composition of functions is given by
Notice that the order of and have been reversed; to undo followed by, we must first undo, and then undo.
For example, let and let. Then the composition is the function that first multiplies by three and then adds five,
To reverse this process, we must first subtract five, and then divide by three,
This is the composition
Self-inverses
If is a set, then the identity function on is its own inverse:More generally, a function is equal to its own inverse, if and only if the composition is equal to. Such a function is called an involution.
Graph of the inverse
If is invertible, then the graph of the functionis the same as the graph of the equation
This is identical to the equation that defines the graph of, except that the roles of and have been reversed. Thus the graph of can be obtained from the graph of by switching the positions of the and axes. This is equivalent to reflecting the graph across the line
Inverses and derivatives
By the inverse function theorem, a continuous function of a single variable is invertible on its range if and only if it is either strictly increasing or decreasing. For example, the functionis invertible, since the derivative
is always positive.
If the function is differentiable on an interval and for each, then the inverse is differentiable on. If, the derivative of the inverse is given by the inverse function theorem,
Using Leibniz's notation the formula above can be written as
This result follows from the chain rule.
The inverse function theorem can be generalized to functions of several variables. Specifically, a continuously differentiable multivariable function is invertible in a neighborhood of a point as long as the Jacobian matrix of at is invertible. In this case, the Jacobian of at is the matrix inverse of the Jacobian of at.
Real-world examples
- Let be the function that converts a temperature in degrees Celsius to a temperature in degrees Fahrenheit, then its inverse function converts degrees Fahrenheit to degrees Celsius, since
- Suppose assigns each child in a family its birth year. An inverse function would output which child was born in a given year. However, if the family has children born in the same year then the output cannot be known when the input is the common birth year. As well, if a year is given in which no child was born then a child cannot be named. But if each child was born in a separate year, and if we restrict attention to the three years in which a child was born, then we do have an inverse function. For example,
- Let be the function that leads to an percentage rise of some quantity, and be the function producing an percentage fall. Applied to $100 with = 10%, we find that applying the first function followed by the second does not restore the original value of $100, demonstrating the fact that, despite appearances, these two functions are not inverses of each other.
- The formula to calculate the pH of a solution is. In many cases we need to find the concentration of acid from a pH measurement. The inverse function is used.
Generalizations
Partial inverses
Even if a function is not one-to-one, it may be possible to define a partial inverse of by restricting the domain. For example, the functionis not one-to-one, since. However, the function becomes one-to-one if we restrict to the domain, in which case
Full inverses
Alternatively, there is no need to restrict the domain if we are content with the inverse being a multivalued function:Sometimes, this multivalued inverse is called the full inverse of, and the portions are called branches. The most important branch of a multivalued function is called the principal branch, and its value at is called the principal value of.
For a continuous function on the real line, one branch is required between each pair of local extrema. For example, the inverse of a cubic function with a local maximum and a local minimum has three branches.