Relay


A relay is an electrically operated switch. It has a set of input terminals for one or more control signals, and a set of operating contact terminals. The switch may have any number of contacts in multiple contact forms, such as make contacts, break contacts, or combinations thereof.
Relays are used to control a circuit by an independent low-power signal and to control several circuits by one signal. They were first used in long-distance telegraph circuits as signal repeaters that transmit a refreshed copy of the incoming signal onto another circuit. Relays were used extensively in telephone exchanges and early computers to perform logical operations.
The traditional electromechanical relay uses an electromagnet to close or open the contacts, but relays using other operating principles have also been invented, such as in solid-state relays which use semiconductor properties for control without relying on moving parts. Relays with calibrated operating characteristics and sometimes multiple operating coils are used to protect electrical circuits from overload or faults; in modern electric power systems these functions are performed by digital instruments still called protective relays or safety relays.
Latching relays require only a single pulse of control power to operate the switch persistently. Another pulse applied to a second set of control terminals, or a pulse with opposite polarity, resets the switch, while repeated pulses of the same kind have no effects. Magnetic latching relays are useful in applications when interrupted power should not affect the circuits that the relay is controlling.

History

In 1809 an electrolytic relay was designed as an alarm for an electrochemical telegraph by Samuel Thomas von Sömmerring.
Electrical relays got their start mainly in application to telegraphs. American scientist Joseph Henry is often cited to have invented a relay in 1835 in order to improve his version of the electrical telegraph, developed earlier in 1831. However, Henry never published any of these experiments and dating for his relay experiments is based solely on the words of Henry himself and his students, often decades later.
In March 1837 Edward Davy deposited a letter with the British Secretary for the Society of Arts containing his ideas for an electromagnetic relay, which, even if it was not the first, was considered more practical than previous designs, being a ‘make-and-break’ type rather than being based on the use of mercury. He did this two months before Charles Wheatstone and William Cooke filed their first patent for their telegraph system and would file a patent for the same idea a year later.
However, an official patent was not issued until 1840 to Samuel Morse for his telegraph, which is now called a relay. The mechanism described acted as a digital amplifier, repeating the telegraph signal, and thus allowing signals to be propagated as far as desired.
The word relay appears in the context of electromagnetic operations from 1860 onwards.

Basic design and operation

A simple electromagnetic relay consists of a coil of wire wrapped around a soft iron core, an iron yoke which provides a low reluctance path for magnetic flux, a movable iron armature, and one or more sets of contacts. The armature is hinged to the yoke and mechanically linked to one or more sets of moving contacts. The armature is held in place by a spring so that when the relay is de-energized there is an air gap in the magnetic circuit. In this condition, one of the two sets of contacts in the relay pictured is closed, and the other set is open. Other relays may have more or fewer sets of contacts depending on their function. The relay in the picture also has a wire connecting the armature to the yoke. This ensures continuity of the circuit between the moving contacts on the armature, and the circuit track on the printed circuit board via the yoke, which is soldered to the PCB.
When an electric current is passed through the coil it generates a magnetic field that activates the armature, and the consequent movement of the movable contact either makes or breaks a connection with a fixed contact. If the set of contacts was closed when the relay was de-energized, then the movement opens the contacts and breaks the connection, and vice versa if the contacts were open. When the current to the coil is switched off, the armature is returned by a force, approximately half as strong as the magnetic force, to its relaxed position. Usually this force is provided by a spring, but gravity is also used commonly in industrial motor starters. Most relays are manufactured to operate quickly. In a low-voltage application this reduces noise; in a high voltage or current application it reduces [|arcing].
file:Relais-Finder-12A.webm|thumb|left|Operation of a 12 A relay
When the coil is energized with direct current, a flyback diode or snubber resistor is often placed across the coil to dissipate the energy from the collapsing magnetic field at deactivation, which would otherwise generate a voltage spike dangerous to semiconductor circuit components. Such diodes were not widely used before the application of transistors as relay drivers, but soon became ubiquitous as early germanium transistors were easily destroyed by this surge. Some automotive relays include a diode inside the relay case. Resistors, while more durable than diodes, are less efficient at eliminating voltage spikes generated by relays and therefore not as commonly used.
file:Relay2.jpg|thumb|A small cradle relay often used in electronics. The "cradle" term refers to the shape of the relay's armature
If the relay is driving a large, or especially a reactive load, there may be a similar problem of surge currents around the relay output contacts. In this case a snubber circuit across the contacts may absorb the surge. Suitably rated capacitors and the associated resistor are sold as a single packaged component for this commonplace use.
If the coil is designed to be energized with alternating current, some method is used to split the flux into two out-of-phase components which add together, increasing the minimum pull on the armature during the AC cycle. Typically this is done with a small copper "shading ring" crimped around a portion of the core that creates the delayed, out-of-phase component, which holds the contacts during the zero crossings of the control voltage.
Contact materials for relays vary by application. Materials with low contact resistance may be oxidized by the air, or may tend to "stick" instead of cleanly parting when opening. Contact material may be optimized for low electrical resistance, high strength to withstand repeated operations, or high capacity to withstand the heat of an arc. Where very low resistance is required, or low thermally-induced voltages are desired, gold-plated contacts may be used, along with palladium and other non-oxidizing, semi-precious metals. Silver or silver-plated contacts are used for signal switching. Mercury-wetted relays make and break circuits using a thin, self-renewing film of liquid mercury. For higher-power relays switching many amperes, such as motor circuit contactors, contacts are made with a mixtures of silver and cadmium oxide, providing low contact resistance and high resistance to the heat of arcing. Contacts used in circuits carrying scores or hundreds of amperes may include additional structures for heat dissipation and management of the arc produced when interrupting the circuit. Some relays have field-replaceable contacts, such as certain machine tool relays; these may be replaced when worn out, or changed between normally open and normally closed state, to allow for changes in the controlled circuit.

Terminology

Since relays are switches, the terminology applied to switches is also applied to relays; a relay switches one or more poles, each of whose contacts can be thrown by energizing the coil. Normally open contacts connect the circuit when the relay is activated; the circuit is disconnected when the relay is inactive. Normally closed contacts disconnect the circuit when the relay is activated; the circuit is connected when the relay is inactive. All of the contact forms involve combinations of NO and NC connections.
The National Association of Relay Manufacturers and its successor, the Relay and Switch Industry Association define 23 distinct electrical contact forms found in relays and switches. Of these, the following are commonly encountered:
  • SPST-NO relays have a single Form A or make contact. These have two terminals which can be connected or disconnected. Including two for the coil, such a relay has four terminals in total.
  • SPST-NC relays have a single Form B or break contact. As with an SPST-NO relay, such a relay has four terminals in total.
  • SPDT relays have a single set of Form C, break before make or transfer contacts. That is, a common terminal connects to either of two others, never connecting to both at the same time. Including two for the coil, such a relay has a total of five terminals.
  • DPST – Double-Pole Single-Throw relays are equivalent to a pair of SPST switches or relays actuated by a single coil. Including two for the coil, such a relay has a total of six terminals. The poles may be Form A or Form B.
  • DPDT – Double-Pole Double-Throw relays have two sets of Form C contacts. These are equivalent to two SPDT switches or relays actuated by a single coil. Such a relay has eight terminals, including the coil
  • Form Dmake before break
  • Form E – combination of D and B
The S or D designator for the pole count may be replaced with a number, indicating multiple contacts connected to a single actuator. For example, 4PDT indicates a four-pole double-throw relay that has 12 switching terminals.
EN 50005 are among applicable standards for relay terminal numbering; a typical EN 50005-compliant SPDT relay's terminals would be numbered 11, 12, 14, A1 and A2 for the C, NC, NO, and coil connections, respectively.
DIN 72552 defines contact numbers in relays for automotive use:
  • 85 = relay coil -
  • 86 = relay coil +
  • 87 = to load
  • 87a = to load
  • 30 = battery +