LS9, Inc
LS-9 Inc was a venture-funded company focused on producing diesel fuel from transgenic organisms. It launched in 2005, took in $81 million in investment, and in 2013 was sold to Renewable Energy Group for $40 million in cash and stock, and an additional $21.5 million if technology and production milestones were met.
Process
Life Sustain 9-Billion uses a one step consolidated method to engineer biofuels, using microbial metabolism. Their technology allows the selection of carbon chain length, branching, saturation, and chemical functionality of each product. LS9 microbial catalysts carryout all chemical conversions in a single step fermentation and produce an immiscible product that is naturally secreted from the cell. Centrifugation or simple settling recovers the final product from the fermentation medium. No distillation is required, making the process very cost and energy efficient. This process is what distinguishes them from competitors. Their platform is to be able to design a microbial catalyst to produce a purified desired compound in a single step conversion, then using the same equipment to make a different product with a different catalyst.Feedstocks
LS9 utilizes sugar cane, corn syrup, sweet sorghum syrup, molasses, glycerin and biomass hydrolysate as potential feedstocks for their fuel production. They obtain these feedstocks through numerous partnerships in various countries including the US, Brazil, Australia, and India. Their catalysts enable them to assimilate both pentose and hexose sugars. The ability to leverage multiple feedstocks provides strategic advantages including the option to change feedstock based on economics and availability, the option to scale in diverse geographies local raw materials, and an ability to avoid competition with food.Products
LS9 has a wide array of products that all stem from their specialty ester product family, which pairs a fatty acid with a series of alcohols. These currently are added to the fermentation vessel, but ultimately will be made in situ. The modifications to their bacteria fermenters will allow the alteration of chain length, branch points and saturation/unsaturation. Their products currently include LS Diesel, LS Kerosene and LS jet fuel. In the future they plan on engineering long chain molecules for personal care markets, as well as amines/amides for agricultural chemicals and adhesives. Overall, their goal is to create a family of fuel products targeted at the very large diesel market. One particular product towards this endeavour is their UltraClean DieselLS9 UltraClean Diesel
One of LS9’s premier products is its UltraClean diesel. This diesel product offers numerous benefits in comparison to both regular diesel fuel, as well as traditional biodiesel. LS9 diesel is above the competition in many varying facets including cetane number, sulphur content, aromatic compound content, cloud point and oxidative stability. In 2010, LS9 UltraClean Diesel was awarded status as an officially registered fuel by the United States Environment Protection Agency. This fuel contributes to a reduction in carbon footprint by 85% in comparison to other fuels. As a registered fuel, LS9's UltraClean Diesel can be sold commercially in the United States.Cetane Number (CN)
A fuel’s cetane number is measurement of the combustion quality of diesel fuel during compression ignition. Fuels with higher cetane number have shorter ignition delays, providing more time for the fuel combustion process to be completed. Generally, diesel engines operate well with a CN from 40 to 55, whereas LS9 UltraClean has a CN of 70.In North America, most states adopt ASTM D975 as their diesel fuel standard and the minimum cetane number is set at 40, with typical values in the 42-45 range. In Europe, with a minimum cetane index of 46 and a minimum cetane number of 51. Premium diesel fuel can have a cetane number as high as 60
Sulfur
Sulfur is a major contributor to the greenhouse gas sulfur hexafluoride, a potent greenhouse gas that the Intergovernmental Panel on Climate Change, has evaluated, with a global warming potential of 22,800 times that of carbon dioxide when compared over a 100-year period Sulfur hexafluoride is also extremely long-lived due to being inert in the troposphere and stratosphere, and has an estimated atmospheric lifetime of 800–3200 years. Due to these facts, it is very beneficial to contain low sulfur levels in fuel. LS9 diesel contains just over half of the sulfurAromatic Compounds
Aromatic compounds in fuel contribute to soot production. Therefore, they have been under investigation and restrictions. The California Air Resources Board and the EU will have limits at 10% and 14% respectively, while the U.S. federal specifications limit aromatics to 35% Soot production plays a major role in smog and environmental concerns, causing for these restrictions to be put in place. LS9 UltraClean diesel has been shown to have no aromatic compounds, whereas fossil fuel diesel contains approximately 10% by volume aromatics.Cloud Point
The cloud point of a fuel is the temperature at which solids dissolved within form precipitates, giving the fuel a cloudy appearance. When a fuel is below its cloud point waxes or biowaxes form within the fuel, clogging fuel filters and injectors. The lower the cloud point, the colder temperatures the fuel can be exposed to without fear of waxy build up. Of the biodiesel alternatives pictured, LS9 biodiesel offers the lowest cloud point, increasing its uses within cold climates.Oxidative Stability
One of the major technical issue facing biodiesel is its susceptibility to oxidation upon exposure to oxygen in ambient air. This becomes a major issue when stored for extended periods of time. This susceptibility is due to its content of unsaturated fatty acid chains. Besides the presence of air, various other factors influence the oxidation process of biodiesel including presence of light, elevated temperature. Where most commercial biofuels only are stable for 3–5 hours, LS9 biodiesel is stable for greater than 6 hours when exposed to oxygen.LS9 Inc. Patents
To date, LS9 has published 29 patents related to the biofuel industry. These patents range from processes detailing the generation of aldehydes, carboxylic acids, esters, alkenes, alkynes, and fatty acid derivatives. It is critical to note that many of the patents published are built upon previous patents and shows a continued commitment by LS9 in the biofuel industry.Of particular importance to LS9’s potential for success may lie in its diversity in patent publications. This concept is illustrated below through the systematic review of LS9’s most pivotal patent as they relate to the main components of biofuel generation.
In line with LS9's main initiatives of using synthetic microorganisms for the production of biofuel components, LS9 has been, for a period of years been pushing patents for specific enzymes involved in fatty acid synthesis and metabolism. This is of particular importance since enzymes are key regulators in metabolic pathways and the opportunity to successfully patent such an enzyme may prove of extreme value to a company vested in economic interests being generated in that area of research.