Ivy Bridge (microarchitecture)
Ivy Bridge is the codename for Intel's 22 nm microarchitecture used in the third generation of the Intel Core processors. Ivy Bridge is a die shrink to 22 nm process based on FinFET Tri-Gate transistors, from the former generation's 32 nm Sandy Bridge microarchitecture—also known as tick–tock model. The name is also applied more broadly to the Xeon and Core i7 Extreme Ivy Bridge-E series of processors released in 2013.
Ivy Bridge processors are backward compatible with the Sandy Bridge platform, but such systems might require a firmware update. In 2011, Intel released the 7-series Panther Point chipsets with integrated USB 3.0 and SATA 3.0 to complement Ivy Bridge.
Volume production of Ivy Bridge chips began in the third quarter of 2011. Quad-core and dual-core-mobile models launched on April 29, 2012 and May 31, 2012 respectively. Core i3 desktop processors, as well as the first 22 nm Pentium, were announced and available the first week of September 2012.
Ivy Bridge is the last Intel platform on which Windows older than Windows 7 and Windows Server older than Windows Server 2008 R2 are officially supported by Microsoft. It is also the earliest Intel microarchitecture to officially support Windows 10 64-bit.
Overview
The Ivy Bridge CPU microarchitecture is a shrink from Sandy Bridge and remains largely unchanged. Like its predecessor, Sandy Bridge, Ivy Bridge was also primarily developed by Intel's Israel branch, located in Haifa, Israel. Notable improvements include:- A new 22 nm Tri-gate transistor technology offers as much as a 50% reduction to power consumption at the same performance level as compared to 2-D planar transistors on Intel's 32 nm process.
- A new pseudorandom number generator and the RDRAND instruction, codenamed Bull Mountain.
Ivy Bridge features and performance
CPU
- F16C
- RDRAND instruction
- Max CPU multiplier of 63
- Configurable TDP for mobile processors
- A 14- to 19-stage instruction pipeline, depending on the micro-operation cache hit or miss
- Supervisor Mode Execution Prevention
- CPUID Faulting support
GPU
- The built-in GPU has 6 or 16 execution units, compared to Sandy Bridge's 6 or 12.
- Intel HD Graphics with DirectX 11, OpenGL 4.0, and OpenCL 1.2 support on Windows. On Linux, OpenGL 4.2 is supported since Mesa 17.1.
- Support for up to three displays
- Multiple 4K displays video playback
- Intel Quick Sync Video version 2
IO
- RAM support up to 2800MT/s in 200 MHz increments
- DDR3L for mobile CPUs
- PCI Express 3.0 support
Benchmark comparisons
- 3% to 6% increase in CPU performance when compared clock for clock
- 25% to 68% increase in integrated GPU performance
Thermal performance issues
Enthusiast reports describe the TIM used by Intel as low-quality, and not up to par for a "premium" CPU, with some speculation that this is by design to encourage sales of prior processors. Further analyses caution that the processor can be damaged or void its warranty if home users attempt to remedy the matter. The TIM has much lower thermal conductivity, causing heat to trap on the die. Experiments with replacing this TIM with a higher-quality one or other heat removal methods showed a substantial temperature drop, and improvements to the increased voltages and overclocking sustainable by Ivy Bridge chips.
Intel claims that the smaller die of Ivy Bridge and the related increase in thermal density is expected to result in higher temperatures when the CPU is overclocked; Intel also stated that this is as expected and will likely not improve in future revisions.
Models and steppings
All Ivy Bridge processors with one, two, or four cores report the same CPUID model 0x000306A9, and are built in four different configurations differing in the number of cores, L3 cache and GPU execution units.| Die code name | CPUID | Stepping | Die size | Die dimensions | Transistors | Cores | GPU EUs | L3 cache | Sockets |
| Ivy Bridge-M-2 | 0x000306A9 | P0 | 94 mm2 | 7.656 × 12.223 mm | ≈634 million | 2 | 6 | 3MB | LGA 1155, Socket G2, BGA-1224, BGA-1023, BGA-1284 |
| Ivy Bridge-H-2 | 0x000306A9 | L1 | 118 mm2 | 8.141 × 14.505 mm | ≈830 million | 2 | 16 | 4 MB | LGA 1155, Socket G2, BGA-1224, BGA-1023, BGA-1284 |
| Ivy Bridge-HM-4 | 0x000306A9 | N0 | 133 mm2 | 7.656 × 17.349 mm | ≈1008 million | 4 | 6 | 6 MB | LGA 1155, Socket G2, BGA-1224, BGA-1023, BGA-1284 |
| Ivy Bridge-HE-4 | 0x000306A9 | E1 | 160 mm2 | 8.141 × 19.361 mm | ≈1400 million | 4 | 16 | 8MB | LGA 1155, Socket G2, BGA-1224, BGA-1023, BGA-1284 |
Ivy Bridge–based Xeon processors
Intel Ivy Bridge–based Xeon microprocessors is the follow-up to Sandy Bridge-E, using the same CPU core as the Ivy Bridge processor, but in LGA 2011, LGA 1356 and LGA 2011-1 packages for workstations and servers.Additional high-end server processors based on the Ivy Bridge architecture, code named Ivytown, were announced September 10, 2013 at the Intel Developer Forum, after the usual one year interval between consumer and server product releases.
The Ivy Bridge-EP processor line announced in September 2013 has up to 12 cores and 30 MB third level cache, with rumors of Ivy Bridge-EX up to 15 cores and an increased third level cache of up to 37.5 MB, although an early leaked lineup of Ivy Bridge-E included processors with a maximum of 6 cores.
Both Core-i7 and Xeon versions are produced: the Xeon versions marketed as Xeon E5-1400 v2 act as drop-in replacements for the existing Sandy Bridge-EN based Xeon E5, Xeon E5-2600 V2 versions act as drop-in replacements for the existing Sandy Bridge-EP based Xeon E5, while Core-i7 versions designated i7-4820K, i7-4930K and i7-4960X were released on September 10, 2013, remaining compatible with the X79 and LGA 2011 hardware.
For the intermediate LGA 1356 socket, Intel launched the Xeon E5-2400 v2 series in January 2014. These have up to 10 cores.
A new Ivy Bridge-EX line marketed as Xeon E7 v2 had no corresponding predecessor using the Sandy Bridge microarchitecture but instead followed the older Westmere-EX processors.
List of Ivy Bridge processors
Processors featuring Intel's HD 4000 graphics are set in bold. Other processors feature HD 2500 graphics or HD Graphics unless indicated by N/A.Desktop processors
List of announced desktop processors, as follows:- Requires a compatible motherboard with 7 series chipsets.
- KUnlocked
- SPerformance-optimized lifestyle
- TPower-optimized lifestyle
- PNo on-die video chipset
- XExtreme performance
Server processors
- LLow power
- CEmbedded applications
- WOptimized for workstations
Mobile processors
- YFanless Ultrabook: Dual-core extreme ultra-low power
- UFanned Ultrabook: Dual-core ultra-low power
- CCommunications
- MDual-core
- QMQuad-core
- XMQuad-core extreme performance
- MEDual-core embedded
Roadmap