Ivy Bridge (microarchitecture)


Ivy Bridge is the codename for Intel's 22 nm microarchitecture used in the third generation of the Intel Core processors. Ivy Bridge is a die shrink to 22 nm process based on FinFET Tri-Gate transistors, from the former generation's 32 nm Sandy Bridge microarchitecture—also known as tick–tock model. The name is also applied more broadly to the Xeon and Core i7 Extreme Ivy Bridge-E series of processors released in 2013.
Ivy Bridge processors are backward compatible with the Sandy Bridge platform, but such systems might require a firmware update. In 2011, Intel released the 7-series Panther Point chipsets with integrated USB 3.0 and SATA 3.0 to complement Ivy Bridge.
Volume production of Ivy Bridge chips began in the third quarter of 2011. Quad-core and dual-core-mobile models launched on April 29, 2012 and May 31, 2012 respectively. Core i3 desktop processors, as well as the first 22 nm Pentium, were announced and available the first week of September 2012.
Ivy Bridge is the last Intel platform on which Windows older than Windows 7 and Windows Server older than Windows Server 2008 R2 are officially supported by Microsoft. It is also the earliest Intel microarchitecture to officially support Windows 10 64-bit.

Overview

The Ivy Bridge CPU microarchitecture is a shrink from Sandy Bridge and remains largely unchanged. Like its predecessor, Sandy Bridge, Ivy Bridge was also primarily developed by Intel's Israel branch, located in Haifa, Israel. Notable improvements include:
The mobile and desktop Ivy Bridge chips also include some minor yet notable changes over Sandy Bridge:

CPU

Compared to its predecessor, Sandy Bridge:
  • 3% to 6% increase in CPU performance when compared clock for clock
  • 25% to 68% increase in integrated GPU performance

    Thermal performance issues

Ivy Bridge's temperatures are reportedly 10°C higher compared to Sandy Bridge when a CPU is overclocked, even at default voltage setting. Impress PC Watch, a Japanese website, performed experiments that confirmed earlier speculations that this is because Intel used a poor quality thermal interface material between the chip and the heat spreader, instead of the fluxless solder of previous generations. The mobile Ivy Bridge processors are not affected by this issue because they do not use a heat spreader between the chip and cooling system. Socket 2011 Ivy Bridge processors continue to use the solder.
Enthusiast reports describe the TIM used by Intel as low-quality, and not up to par for a "premium" CPU, with some speculation that this is by design to encourage sales of prior processors. Further analyses caution that the processor can be damaged or void its warranty if home users attempt to remedy the matter. The TIM has much lower thermal conductivity, causing heat to trap on the die. Experiments with replacing this TIM with a higher-quality one or other heat removal methods showed a substantial temperature drop, and improvements to the increased voltages and overclocking sustainable by Ivy Bridge chips.
Intel claims that the smaller die of Ivy Bridge and the related increase in thermal density is expected to result in higher temperatures when the CPU is overclocked; Intel also stated that this is as expected and will likely not improve in future revisions.

Models and steppings

All Ivy Bridge processors with one, two, or four cores report the same CPUID model 0x000306A9, and are built in four different configurations differing in the number of cores, L3 cache and GPU execution units.
Die code nameCPUIDSteppingDie sizeDie dimensionsTransistorsCoresGPU EUsL3 cacheSockets
Ivy Bridge-M-20x000306A9P094 mm27.656 × 12.223 mm≈634 million263MBLGA 1155,
Socket G2,
BGA-1224,
BGA-1023,
BGA-1284
Ivy Bridge-H-20x000306A9L1118 mm28.141 × 14.505 mm≈830 million2164 MBLGA 1155,
Socket G2,
BGA-1224,
BGA-1023,
BGA-1284
Ivy Bridge-HM-40x000306A9N0133 mm27.656 × 17.349 mm≈1008 million466 MBLGA 1155,
Socket G2,
BGA-1224,
BGA-1023,
BGA-1284
Ivy Bridge-HE-40x000306A9E1160 mm28.141 × 19.361 mm≈1400 million4168MBLGA 1155,
Socket G2,
BGA-1224,
BGA-1023,
BGA-1284

Ivy Bridge–based Xeon processors

Intel Ivy Bridge–based Xeon microprocessors is the follow-up to Sandy Bridge-E, using the same CPU core as the Ivy Bridge processor, but in LGA 2011, LGA 1356 and LGA 2011-1 packages for workstations and servers.
Additional high-end server processors based on the Ivy Bridge architecture, code named Ivytown, were announced September 10, 2013 at the Intel Developer Forum, after the usual one year interval between consumer and server product releases.
The Ivy Bridge-EP processor line announced in September 2013 has up to 12 cores and 30 MB third level cache, with rumors of Ivy Bridge-EX up to 15 cores and an increased third level cache of up to 37.5 MB, although an early leaked lineup of Ivy Bridge-E included processors with a maximum of 6 cores.
Both Core-i7 and Xeon versions are produced: the Xeon versions marketed as Xeon E5-1400 v2 act as drop-in replacements for the existing Sandy Bridge-EN based Xeon E5, Xeon E5-2600 V2 versions act as drop-in replacements for the existing Sandy Bridge-EP based Xeon E5, while Core-i7 versions designated i7-4820K, i7-4930K and i7-4960X were released on September 10, 2013, remaining compatible with the X79 and LGA 2011 hardware.
For the intermediate LGA 1356 socket, Intel launched the Xeon E5-2400 v2 series in January 2014. These have up to 10 cores.
A new Ivy Bridge-EX line marketed as Xeon E7 v2 had no corresponding predecessor using the Sandy Bridge microarchitecture but instead followed the older Westmere-EX processors.

List of Ivy Bridge processors

Processors featuring Intel's HD 4000 graphics are set in bold. Other processors feature HD 2500 graphics or HD Graphics unless indicated by N/A.

Desktop processors

List of announced desktop processors, as follows:

  1. Requires a compatible motherboard with 7 series chipsets.
Suffixes to denote:
  • KUnlocked
  • SPerformance-optimized lifestyle
  • TPower-optimized lifestyle
  • PNo on-die video chipset
  • XExtreme performance

    Server processors

Suffixes to denote:
  • LLow power
  • CEmbedded applications
  • WOptimized for workstations

    Mobile processors

Suffixes to denote:
  • YFanless Ultrabook: Dual-core extreme ultra-low power
  • UFanned Ultrabook: Dual-core ultra-low power
  • CCommunications
  • MDual-core
  • QMQuad-core
  • XMQuad-core extreme performance
  • MEDual-core embedded

    Roadmap

Intel demonstrated the Haswell architecture in September 2011, which began release in 2013 as the successor to Sandy Bridge and Ivy Bridge.

Fixes

Microsoft has released a microcode update for selected Sandy Bridge and Ivy Bridge CPUs for Windows 7 and up that addresses stability issues. The update, however, negatively impacts Intel G3258 and 4010U CPU models.